Дизельный двигатель — поршневой ДВС, работающий от воспламенения распыленного топлива

Дизельный двигатель — поршневой ДВС, работающий от воспламенения распыленного топлива

Бензиновый двигатель является довольно неэффективным и способен преобразовывать всего лишь около 20-30% энергии топлива в полезную механическую работу. Стандартный дизельный двигатель обычно имеет коэффициент полезного действия в 30-40%, а с турбонаддувом и промежуточным охлаждением свыше 50% (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4%). Дизельный двигатель из-за использования впрыска высокого давления не предъявляет требований к летучести топлива, что позволяет использовать в нём низкосортные тяжелые масла (даже на подсолнечном масле дизель может работать практически без потери мощности).
Дизельный двигатель не способен развивать высокие обороты— смесь не успевает догореть в цилиндрах, что приводит к снижению удельной мощности двигателя на 1 л объёма, а значит, и к снижению удельной мощности на 1кг массы двигателя. Это послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Юнкерс, а также советский тяжелый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А.Д.Чаромского и Т.М.Мелькумова). На максимальной эксплуатационной мощности смесь в дизеле не догорает, приводя к выбросу облаков сажи (есть народная поговорка «тепловоз дает медведя»).
Дизельный двигатель не имеет дроссельной заслонки, регулирование мощности осуществляется регулированием количества впрыскиваемого топлива. Это приводит к отсутствию снижения давления в цилиндрах на низких оборотах. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах— это углеводороды (НС или СН) , оксиды (окислы) азота (Nox) и сажа (или её производные) в форме чёрного дыма. Они могут привести к астме и раку лёгких. Больше всего загрязняют атмосферу дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.
Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность восгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания, попросту говоря, у дизеля нет свечей зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта, в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности (мощности, снимаемой с единицы массы мотора), а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата.

Конечно, существуют и недостатки, среди которых характерный стук дизельного двигателя при его работе и маслянистость топлива. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартера большой мощности, помутнение и застывание летнего дизельного топлива при низких температурах, сложность в ремонте и регулировке топливной аппаратуры (ТНВД), так как насосы высокого давления являются устройствами, изготовленными с высокой точностью. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Такие загрязнения очень быстро выводят топливную аппаратуру из строя. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным крутящим моментом в своём рабочем диапазоне. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов («катализатор» в просторечии), работающих при температуре отработавших газов свыше 300°C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой «Common-rail» системы. В данном типе дизелей впрыск топлива осуществляется электрически управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса.

Так что, по сложности современный и экологически такой же чистый, как и бензиновый дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров сложности и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар, то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра». «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов.

В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим очистки «сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонаддува (или даже двойного наддува), а в последние годы— и так называемого «интеркулера»— то есть устройства, охлаждающего сжатый турбонагнетателем воздух. Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

Вам будет интересно  Самые лучшие моторные масла

В своей основе конструкция дизельного двигателя подобна конструкции бензинового инжекторного двигателя. Однако, аналогичные детали у дизеля обычно тяжелее и более устойчивы к высокому давления сжатия, имеющим место у дизеля. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и часто (но не всегда) рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Во многих случаях головки поршней содержат в себе камеру сгорания.

КОНСТРУКЦИЯ

Особенности двигателя

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Типы камер сгорания дизельных двигателей

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.
Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

Разновидности камер сгорания дизелей

При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.
Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.
Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Система питания дизеля

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Схема системы питания дизельного двигателя

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название — рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам. Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима. Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Вам будет интересно  «Саечка за испуг»: как автомобилисты гнобят велосипедистов

Кардинально изменить ситуацию могла только оптимизация процесса горения топливовоздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом. В конечном итоге это способствует более полному сгоранию топливовоздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как "волновое гидравлическое давление". При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, "бегающие" по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов.

Насос форсунка дизеля

В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

Электронная система впрыска дизельного двигателя

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головки блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок. Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска. Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам. Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могут быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок — высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рыбка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля. Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

А теперь посмотрите обучающие и очень интересное видео о дизельном двигателе.

Турбодизель. Система турбонаддува.

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — "турбоямы". Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха — интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность.

Надув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения "высотности" двигателя — в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности. В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Не посмеешь, не сожмешь

На родине дизеля запрещают дизель. Пока еще не совсем — просто муниципалитеты германских городов получили право ограничивать въезд на свою территорию легковых дизельных автомобилей. Мотивировка — содержание оксидов азота в выхлопе моторов, в которых воспламенение смеси происходит от ее сжатия, превышает нормативы Европейского союза. Впрочем, даже если вы пользуетесь своим дизельным автомобилем вне городской черты, налоги, которые придется платить с «кубика», будут в Германии почти в пять раз больше, чем у владельца бензиновой машины. Но лиха беда начало. За что его так и что будет?

Вам будет интересно  Как работает двигатель автомобиля – устройство, принцип действия видео; АвтоНоватор

Безусловно, благая цель — защита здоровья горожан — фактически означает резкое снижение интереса покупателей к дизелю. Собственно, процесс уже пошел. Спрос на машины, потребляющие солярку, падает. В конструкторских бюро автомобильных фирм работ по усовершенствованию дизельных моторов уже почти не ведется. А ведь еще вчера дизели считались чуть ли не будущим автомобилестроения — в силу своей экономичности и бережного отношения к окружающей среде.

Словом, самое время понять: что это было, как это работало, чего мы лишаемся и стоит ли об этом жалеть.

Что такое дизельный мотор и где его применяли?

Ключевое отличие дизеля от бензинового двигателя — способ воспламенения топливовоздушной смеси.

Немецкий инженер Рудольф Дизель в конце XIX века решил усовершенствовать двигатель внутреннего сгорания и лишить его свечей. Для воспламенения топлива в его моторе использовался нагрев воздуха при его сжатии в цилиндре в 15—20 раз.

Увы, двигатель Дизеля при рабочем объеме 19,6 л развивал лишь 20 лошадиных сил! Эту махину, конечно, трудно было бы использовать на автомобиле. Поэтому первые дизели применялись в промышленности и, в частности, для перекачки нефти. Лицензию на них купили братья Нобель для разработки месторождений в России.

До легковых автомобилей дизель добрался только в середине тридцатых годов. Так, в 1936 году состоялся официальный дебют Mercedes—Benz 260 D. Его 2,6—литровый дизель развивал 45 л. с. — на 10 л. с. меньше, чем бензиновый двигатель модели 230, а сама машина была на 100 кг тяжелее. Но расход был примерно в полтора раза ниже. Правда, стоила дизельная модель почти на тысячу рейхсмарок дороже: для нее необходима сложная топливная аппаратура — солярку надо впрыскивать в цилиндр под большим давлением. А бензин в то время смешивали с воздухом в карбюраторе, который гораздо проще и дешевле. Такие отличия привели к тому, что дизельные автомобили заняли «профессиональную» нишу и в основном использовались как такси или развозные автомобили. Большие ежедневные пробеги помогали быстрее окупить более высокие затраты на приобретение.

Толчок спросу на дизели дал топливный кризис 1973 года — цены на бензин выросли в несколько раз, и даже в богатых США потребители просто сметали из дилерских шоу—румов компактные и экономичные автомобили. В Европе доля дизельных легковых автомобилей, колебавшаяся около 2,5 процента, за пару лет выросла более чем в полтора раза, до 4,1. Французская группа Peugeot почти в одиночестве предлагала дизельные версии для компактных автомобилей, и преуспела в этом. Затем к ней присоединился Volkswagen — выпустил дизельный Golf. Долю в 10 процентов в объемах продаж в Европе дизель преодолел в первой половине восьмидесятых годов. В XXI веке во многих европейских странах доля дизельных превышает половину всех проданных легковых машин.

Работа двухтактного дизеля

Дизельные моторы, как и бензиновые, бывают четырехтактными и двухтактными. В последнем рабочий цикл происходит за один оборот коленвала — то есть два движения поршня, а не четыре. Такой двигатель имеет бо?льшую удельную мощность, чем четырехтактный. Но он более шумный и имеет худшие экологические показатели, так что на легковых автомобилях практически не применяется. Однако устройство и основные принципы работы дизельного мотора лучше видны именно на его двухтактном варианте.

Начинается не с нижней мертвой точки поршня, а с момента, когда он перекрывает окна, через которые входил воздух.

Когда цилиндр оказался в верхней мертвой точке и воздух максимально сжат и поэтому нагрет, впрыскивается топливо. От высокой температуры оно воспламеняется, и давление толкает поршень вниз.

Поршень доходит до продувочных окон, открывается выпускной клапан.

Через открытые продувочные окна подается свежий воздух, давление которого вытесняет отработавшие газы.

Слово "солярка" происходит от немецкого Solaroel, "солнечное масло" — оно желтое по цвету.

Заметно ли было отличие типов двигателя при пользовании автомобилем?

Раньше дизель был более шумный, а низкая литровая мощность означала, что при равном рабочем объеме мотор развивает заметно меньшую мощность и автомобиль едет медленнее. Зато высокий крутящий момент на низких оборотах — типичная черта дизеля — позволял быстрее разгоняться.

Современные электронные системы управления так хорошо работают, что и по поведению машины, и на «на слух» отличить дизельный мотор от бензинового довольно сложно. Разве что взглянуть на тахометр: если там максимальные обороты 4000—5000 — то это дизельный, а если 6000—7000 и выше — то бензиновый.

Достоинства иногда оборачиваются недостатками. Высокая эффективность дизеля в преобразовании энергии топлива в механическое движение означает, что дизель меньше греется. Поэтому дизелям не хватает тепла на отопление салона, и большинство дизельных моделей оснащается дополнительным электрическим нагревателем. Большинство дизельных модификаций дороже своих бензиновых собратьев, в том числе и по этой причине.

Чем солярка отличалась от бензина?

И то и другое — набор углеводородов, выделяемый из нефти. Просто разные фракции.

Изначально в XIX веке процессы переработки нефти были довольно простыми: ее нагревали, а потом собирали выпаривающиеся при разных температурах фракции. Среди них был и бензин, так называемый прямогонный, который начинал испаряться при довольно низких температурах — от 33 до 190 градусов, затем керосин и газойль, а потом другие фракции, в том числе соляровое масло. Таким образом, бензин за счет его легкого испарения получить было довольно просто, и он стал популярным топливом.

Одно из следствий того, что бензин легко испаряется, — его более высокая пожароопасность. Когда в Советскую армию стали поступать дизельные танки Т—34, некоторые инструкторы убеждали бойцов в большей безопасности солярки: они вставляли в ведро с дизтопливом факел — и он гас. Топливо просто не успевало образовать горючую смесь с воздухом.

Главная характеристика дизтоплива — цетановое число. Оно показывает, как быстро топливо начинает воспламеняться после впрыска в горячую камеру сгорания, чем цетановое число выше, тем лучше. По действующим стандартам оно должно быть не менее 45 единиц. У бензина же главный параметр — устойчивость к детонации, то есть способность противостоять взрыву при сжатии. Его определяет октановое число: чем оно выше, тем лучше бензин. Грубо говоря, это характеристика, противоположная цетановому числу. И еще у него хуже смазывающие свойства. Поэтому если залить бензин в дизель и дать ему поработать, то можно довести мотор до полной негодности.

Источник https://www.studiplom.ru/blog/auto/dizelnyj-dvigatel-i-ego-kharakteristiki

Источник https://www.kommersant.ru/doc/3607868

Источник

Источник

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: