full screen background image

Эффективный КПД и удельный эффективный расход топлива

16

Содержание

Эффективный КПД и удельный эффективный расход топлива

КПД двигателя внутреннего сгорания. Сколько приблизительно равен, а также мощность в процентах

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала …

ОГЛАВЛЕНИЕ СТАТЬИ

Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

КПД двигателя внутреннего сгорания – это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую. Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов. Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

тепловая машина по циклу Карно Схема теплового двигателя

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность. Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потери. Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери. НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД бензинового и дизельного агрегатов – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного больше крутящий момент, сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению степени сжатия, есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

На этом заканчиваю, читайте наш АВТОБЛОГ.

(
45 голосов, средний: 3,82 из 5)
Источник

КПД тепловой машины

Тепловой двигатель Карно — это теоретическая модель идеального теплового двигателя, показывающая, как наилучший идеальный агрегат способен постоянно работать в цикле из четырех процессов, называемых циклом Карно.

Идеальный тепловой двигатель физика Карно работает на газовой среде, заключенной в цилиндре с поршнем. Газ берет энергию от источника тепла, расширяется и выталкивает поршень наружу. Когда поршень возвращается в цилиндр, он сжимает и нагревает газ, поэтому газ завершает цикл с параметрами по давлению, объему и температуре, с которых начинал.

Карно показал, что максимальная эффективность, обозначаемая символом «η» — это коэффициент полезного действия, или КПД, может быть достигнута только тепловым двигателем Карно.

КПД теплового двигателя, можно определить формулой: η = (T h — T c) / T h или η = 1 — T c / T h, где:

Кпд тепловой машины формула

  • η — эффективность работы теплового двигателя или КПД;
  • T h — температура горячего источника;
  • T c -температура холодного источника.

Заключение, к которому пришел Карно: эффективность двигателя, как реального, так и теоретического, зависит от максимальной Tmax и минимальной температуры среды Tmin, в которой он работает, и может быть описана формулой: η = (Tmax-Tmin) / Tmax

Другими словами, эффективный тепловой агрегат работает при максимально возможной разнице температур. Для этого нужно создать условия, чтобы Tmax была как можно выше, а Tmin как можно ниже.

Для создания этих условий на практике, например, на тепловой станции, специально устанавливают градирни в виде большого водяного охладителя, для того чтобы максимально охлаждать конденсат от паровой турбины, в этом случае КПД станции значительно повышается, количество теплоты через парогенератор растет и снижается стоимость единицы выработки тепловой и электрической энергии.

Бензиновый или Дизельный?

Если автомобиль оборудован дизельным двигателем, то в процессе эксплуатации будут значительно сэкономлены средства за счет меньшего расхода топлива. Чем это объясняется? У дизельного двигателя легкового автомобиля степень сжатия находится в пределах 20—22 единицы по сравнению с 9—10 у бензиновых двигателей, что обеспечивает более высокий КПД.

Кроме того, у дизеля регулирование рабочей смеси в основном качественное, т. е. вне зависимости от частоты вращения коленчатого вала и нагрузки в цилиндры подается практически одинаковое количество воздуха, а количество используемого топлива увеличивается с нагрузкой. Но даже при полной мощности масса впрыскиваемого топлива в 1,5— 1,7 раза меньше, чем у бензинового двигателя такого же рабочего объема.

Это означает, что действительная степень сжатия, т. е. давление и температура конца сжатия, не зависит от нагрузки, а рабочая смесь по сравнению с бензиновым двигателем всегда очень бедная. Эти факторы обеспечивают дизелю высокую эффективность сгорания и последующего расширения и на частичных нагрузочных режимах.

В условиях эксплуатации стабильность мощностных показателей и расхода топлива зависит в первую очередь от сопротивления воздухоочистителя, которое влияет на наполнение цилиндров воздухом (в том числе и двигателей с турбонаддувом), угла опережения впрыска топлива, давления начала подъема иглы форсунки (давления начала впрыска), качества распыла топлива форсунками, а также от характера (закона) подачи топлива топливным насосом высокого давления.

Следует отметить, что стабильность регулировочных параметров системы подачи топлива у дизельных двигателей выше, чем у бензиновых. Однако в процессе эксплуатации нужно строго контролировать качество очистки воздуха и топлива, а также исключить возможность перегрева двигателя, что незамедлительно повлияет на работу форсунок и поршневой группы.

Про долговечность двигателя

Дизельные двигатели более долговечны, чем бензиновые, что объясняется более прочным и жестким выполнением блока цилиндров, коленчатого вала, деталей цилиндро-поршневой группы, головки блока цилиндров и применением дизельного топлива, которое в отличие от бензина в известной степени также является смазочным материалом.

К недостаткам дизельных двигателей следует отнести большую массу, меньшую литровую мощность, повышенный шум из-за высокого давления сгорания и затрудненный пуск при отрицательных температурах окружающего воздуха, особенно у автомобилей прошедших 100 000 км и более.

В процессе эксплуатации изнашиваются плунжерные пары топливного насоса высокого давления, нарушается герметичность посадки иглы форсунки, что приводит на низких оборотах при пуске (70—90 оборотов в минуту) к плохому распылению шва. В то же время в результате появившегося износа цилиндро-поршневой группы на такой частоте вращения заметно увеличивается прорыв сжимаемого воздуха в картер, а значит, давление и температура не достигают значений, необходимых для воспламенения распыленного топлива.

Тем не менее существуют достаточно простые устройства, которые резко улучшат запуск дизелей при низких температурах, в том числе теплообменное устройство, устанавливаемое на период зимней эксплуатации во впускной коллектор. Опыт эксплуатации дизельных двигателей позволяет сделать вывод, что рассмотренные выше изменения, которые происходят в топливной аппаратуре и цилиндро-поршневой группе, почти не вызывают снижения мощности и увеличения расхода топлива. Двигатели подвергаются ремонту, главным образом, из-за повышения расхода смазочного масла, что можно легко определить по доливу и появлению голубого дыма, который образуется из-за сгорания масла.

Бензиновые двигатели имеют более высокую частоту вращения, большую литровую мощность, шум и вибрации более низкие. Регулирование горючей смеси в них, главным образом, количественное. Поэтому на малой и средней мощностях (двигатели легковых автомобилей работают в основном в этих режимах), действительная степень сжатия — низкая, т. е. в результате дросселирования на впуске и частичного наполнения цилиндра вместо давления сжатия, например 2,5 МПа на полной мощности, смесь сжимается до 1,0 МПа. Отсюда — низкая эффективность сгорания и последующего расширения, а значит, и большой расход топлива.

Эффективный КПД и удельный эффективный расход топлива

Экономичность работы двигателя в целом определяют эффективным КПД

ni и удельным эффективным расходом топлива ge. Эффективный КПД

оценивает степень использования теплоты топлива с учетом всех видов потерь как тепловых так и механических и представляет собой отношение теплоты Qe, эквивалентной полезной эффективной работе, ко всей затраченной теплоте Gт*Q, т.е. nm=Qe/(Gт*(Q^p)н)=Ne/(Gт*(Q^p)н) (2).

Так как механический КПД равен отношению Ne к Ni, то, подставляя в

уравнение, определяющее механический КПД nm, значения Ne и Ni из

уравнений (1) и (2), получим nm=Ne/Ni=ne/ni, откуда ne=ni/nM, т.е. эффективный КПД двигателя равен произведению индикаторного КПД на механический.

Удельный эффективный расход топлива [кг/(кВт*ч)] представляет собой отношение секундного расхода топлива Gт к эффективной мощности Ne, т.е. ge=(Gт/Ne)*3600, или [г/(кВт*ч)] ge=(Gт/Ne)*3.6*10^6.

Тепловой баланс двигателя

Из анализа рабочего цикла двигателя следует, что только часть теплоты, выделяющейся при сгорании топлива, используется на полезную работу, остальная же часть составляет тепловые потери. Распределение теплоты, полученной при сгорании вводимого в цилиндр топлива, называют тепловым балансом, который обычно определяется экспериментальным путем. Уравнение теплового баланса имеет вид Q=Qe+Qг+Qн.с+Qост, где Q — теплота топлива, введенная в двигатель Qe — теплота, превращенная в полезную работу; Qохл — теплота, потерянная охлаждающим агентом (водой или воздухом); Qг — теплота, потерянная с отработавшими газами; Qн.с — теплота, потерянная вследствие неполного сгорания топлива, Qост — остаточный член баланса, который равен сумме всех неучтенных потерь.

Количество располагаемой (введенной) теплоты (кВт) Q=Gт*(Q^p)н. Теплота (кВт), превращенная в полезную работу, Qe=Ne. Теплота (кВт), потерянная с охлаждающей водой, Qохл=Gв*св*(t2-t1), где Gв — количество воды, проходящей через систему , кг/с; св – теплоемкость воды, кДж/(кг*К) [св=4.19 кДж/(кг*К)]; t2 и t1 — температуры воды при входе в систему и при выходе из нее, С.

Тепловой баланс двигателя .Определение ,составляющие теплового баланса , влияние нагрузки ,скоростного режима на тепловой баланс двигателя.

Тепловой баланс двигателя — это распределение тепла от сгоревшего топлива на составные части: на полезную работу, на потери тепла с отработавшими газами, на потери тепла в системе охлаждения, на механические потери, на шумы и вибрации.

Влияние различных факторов на тепловой баланс двигателя

На распределение теплоты в двигателе оказывают влияние такие факторы как частота вращения коленчатого вала, нагрузка, состав смеси, угол опережения зажигания.

Частота вращения коленчатого вала.

Сростом частоты враще­ния коленчатого вала абсолютные величины всех составляющих теплового баланса увеличиваются, так как в двигатель за единицу времени поступает большее количество теплоты. Изменение отно­сительных величин теплового баланса в зависимости от частоты вращения коленчатого вала. С увеличением нагрузки значение qе увеличивается до максимума, когда произведение ni*nm принимает наибольшее значение. Дальнейшее уменьшение де связано с обогащением смеси на полных нагрузках, при этом возрастает доля qнс.Влияние нагрузки на составляющие теплового баланса
: а— изменение абсолютных значений; б —
изменение относительных величин.Влияние угла опережения зажигания на составляющие теплового баланса двигателя
Угол опережения зажигания.
Наибольшие значения
q
есоответстуют оптимальному значению угла пережения зажигания (рис. 6.6). Потери теплоты в систему охлаждения возрастают как при раннем, так и при позднем зажигании, так как сгорание в этих случаях происходит в невыгодных условиях. При позднем зажигании возрастают потери теплоты с отработавшими газами, так как догорание происходит уже в стадии процесса расширения. На потери, связанные с неполнотой сгорания, угол опережения зажигания влияния не оказывает, так как коэффициент избытка воздуха остается при этом неизменным.

5.Смесиобразование в дизелях .Особенности смесиобразования ,типы камер сгорание .в чем суть объемно- пленочного смеси образования.Процесс смесеобразования осуществляется в результате распыливания топлива с помощью форсунки высокого давления, направленного вихревого движения заряда в камере, а иногда также регулирования температуры деталей, на которых происходит испарение топлива. В зависимости от характера впрыска топлива различают объемный, пленочный и объемно-пленочный (смешанный) типы смесеобразования, которые осуществляются в неразделенных камерах сгорания.

Объемное смесеобразование

— впрыск топлива производится в воздушную среду. При этом методе попадание топлива на стенки камеры сгорания не допускается. Такое смесеобразование имеет место в 2-тактных двигателях
.Пленочное смесеобразование
— основная часть топлива попадает на стенки камеры и растекается в виде тонкой жидкой пленки. В этом случае для хорошего воспламенения в сжатый воздух впрыскивается около 5% топлива, а остальная его часть — на стенки. часть топлива впрыскивается в воздушную среду, а часть на стенки.

Один из способов объемно-пленочного смесеобразования предложен Мойрером и разработан фирмойMAN(ФРГ). Он характеризуется следующими особенностями:- для лучшего воспламенения и сгорания в сжатый воздух впрыскивается 5% топлива, а основная масса топлива (95%) наносится на стенки в виде пленки толщиной 10-15мк;- впрыснутое в нагретый воздух топливо самовоспламеняется и затем поджигает горючую смесь, образующуюся в процессе испарения пленки со стенок цилиндра и перемешивания паров топлива с воздухом;- топливо с поверхности стенок в начале сгорания испаряется сравнительно медленно и горение начинается медленно. Затем процессы ускоряются, при этом поршень идет к НМТ и поэтому двигатель работает мягко и бесшумно;- такой процесс сгорания позволяет использовать в двигателе различные топлива: бензин, керосин, лигроин, соляровое масло и др. — камера сгорания имеет развитые вытеснители, создающие интенсивное вихревое движение воздушного заряда, что способствует хорошему испарению и смесеобразованию.Двигатели с подобным процессом называются многотопливными двигателями. Типы камер сгорания:Разделенная

В ходе вихрекамерного, равно как и форкамерного процесса сгорания, дизтопливо поступает в предварительную камеру, где перемешивается с воздухом и воспламеняется. Если камера выполнена в форме сферы, воздух может интенсивно закручиваться, образуя вихрь. А форкамерная конструкция предусматривает наличие тонких каналов, при прохождении которых смесь становится однороднее.Как видим, в разделенной камере любого типа топливо сгорает «в два шага». Это способствует снижению нагрузки на поршневую группу. Недостатком же являются не лучшие пусковые качества и увеличение расхода топлива, возникающее из-за дополнительных затрат на перекачивание смеси между камерами.
Неразделенная«
Дизель» с неразделенной камерой сгорания всегда оснащается системой непосредственного впрыска. Такие двигатели, разумеется, намного экономичнее моторов любой другой конструкции. Но применение прямого впрыска на «дизелях» с большой частотой вращения коленвала влечет множество разнообразных проблем. Основными из них являются вибрация и шум, которые становятся наиболее заметными в процессе разгона.

6.Испытание двигателей. Назначение и виды испытание двигателей.

Исследовательские испытания, Доводочные испытания, Испытания на надежность,Граничные испытания,Контрольные испытания, Предварительные контрольные испытания ,Межведомственные испытания, Серийные испытания ,Приемо-сдаточные испытания Периодические испытания, Типовые испытания.

8.Кинематика КШМ. В чем причина неравномерности крутящегося момента?Какими способами уменьшают неравномерность крутящегося момента? Кривошипно-шатунный механизм (KШM) является основным механизмом поршневого ДВС, который воспринимает и передает значительные по величине нагрузки. Поэтому расчет прочности KШM имеет важное значение. В свою очередь расчеты многих деталей двигателя зависят от кинематики и динамики КШМ. Кинематический анализ КШМ устанавливает законы движения его звеньев, в первую очередь поршня и шатуна. Кривошипно-шатунный механизм (КШМ) служит для преобразования поступательного движения поршня во вращательное движение коленчатого вала.При рассмотрении кинематики КШМ предполагается, что угловая скорость вращения коленчатого вала постоянна. В действительности из-за неравномерности крутящего момента двигателя угловая скорость вала переменна, но изменяется в незначительных пределах.Различают три основных вида КШМ:

— центральный (нормальный) КШМ, в котором ось цилиндра пересекает ось вращения коленвала

— смещённый (дезаксиальный) КШМ, в котором ось цилиндра не проходит через ось коленвала, при этом смещение оси цилиндра «С», которое называется дезаксаж, обычно не превышает 10 % хода поршня

-КШМ с прицепным шатуном, у которого два шатуна передают усилия на одну и ту же шатунную шейку коленвала (рис. 7.1, в). Шатун соединённый с шейкой называется главным, шатун шарнирно соединённый с нижней головкой – главного шатуна – прицепным. Поршень, сочлёнённый с главным шатуном, называется главным поршнем, а сочленённый с прицепным шатуном – боковым. В общем случае с главным шатуном могут соединяться два прицепных шатуна (W – образный двигатель) или более двух (звёздообразный двигатель).

9.Эксплуатационными свойствами автомобиля называются свой­ства, характеризующие выполнение им транспортных и специ­альных работ: перевозки пассажиров, грузов и специального оборудования. Эти свойства определяют приспособленность автомобиля к условиям эксплуатации, а также эффективность и удоб­ство его использования. Автомобиль обладает целым рядом эксплуатационных свойств (рис. 1.1), которые составляют две группы, связанные и не свя­занные с движением автомобиля.

Тягово-скоростные и тормозные свойства, топливная эконо­мичность, управляемость, Поворачиваемость, маневренность, устойчивость, проходимость, плавность хода, Экологичность и безопасность обеспечивают движение автомобилей и определяют его закономерности.

Вместимость, прочность, долговечность, приспособленность к техническому обслуживанию и ремонту, погрузочно-разгрузочным работам, посадке и высадке пассажиров во многом опреде­ляют эффективность и удобство использования автомобиля.

Что же представляют собой эксплуатационные свойства авто­мобиля. Дадим определения этим свойствам.

тягово-скоростными называются свойства автомобиля, опреде­ляющие диапазоны изменения скоростей движения и максималь­ные ускорения разгона в различных дорожных условиях при рабо­те в тяговом режиме.

Тяговым называется режим движения автомобиля, при кото­ром от двигателя к ведущим колесам через трансмиссию подво­дятся мощность и крутящий момент, необходимые для движения.

Тормозными называются свойства автомобиля, определяющие максимальные замедления при торможении в различных дорож­ных условиях и обеспечивающие неподвижное удержание его от­носительно поверхности дороги.

Топливная экономичность — это свойство автомобиля, опреде­ляющее расходы топлива при выполнении транспортной работы.

Управляемостью называется свойство автомобиля изменять или сохранять параметры движения при воздействии водителя на ру­левое управление.

КПД двигателя: бензиновый, дизельный

Среди множества характеристик механизмов в автомобиле важное значение имеет КПД двигателя. Наверняка многие автовладельцы задаются вопросом: что собой представляет классический ДВС и его КПД, ведь от этого показателя напрямую зависит работа силового агрегата – чем он выше, тем эффективнее его работа. Сегодня самым эффективным считается электрический тип мотора, его КПД способен достигать 90-95 %, а вот двигатели внутреннего сгорания, будь то бензин или дизель, по этому значению далеки от идеала.

КПД двигателя – что это такое

КПД двигателя внутреннего сгорания означает значение соотношение двух величин: мощность, подающаяся в процессе функционирования мотора на коленчатый вал к мощности, которая получается поршнем посредством давления газов, образовавшихся при воспламенении топлива. Проще говоря, это преобразование тепловой или термической энергии, которая образуется при сгорании топливной смеси (бензин и воздух) в механическую.

На эффективность КПД двигателя влияют совокупность различных механических потерь, возникающих на разных стадиях функционирования, а также движение отдельных деталей двигателя, вызывающих трение. Эти детали вызывают наибольшие потери, составляющие примерно 70 % от их общего количества. К ним частям относятся поршни, поршневые кольца, подшипники. Помимо этого, потери возникают от функционирования таких механизмов, как магнето, насосы и пр., которые могут достигать до 20%. Наименьшую часть потерь составляют сопротивления, возникающие в процессе впуска/выпуска в топливной системе.

Причины неэффективности

Нужно понимать — все существующие тепловые двигатели работают хуже, чем агрегат Карно, имеющий η = 1, что называют КПД теплового двигателя Карно. В этом смысле любая тепловая машина на практике является неэффективной, что можно объяснить тремя причинами:

Кпд тепловых двигателей

  1. Необратимость процессов. Согласно принципу Карно, ни одно устройство не может быть более эффективным, чем теоретический цикл Карно, при условии работы в режиме с одинаковыми высокотемпературными и низкотемпературными источниками.
  2. Наличие трения и тепловых потерь. В реальных термодинамических системах общая неэффективность реального цикла обусловлена потерями отдельных компонентов. В устройствах, таких как турбины, насосы и компрессоры, механическое трение, тепловые потери и потери в процессе сгорания определяют общий размер потерь и снижения эффективности.
  3. Несовершенство технологического процесса. Это существенный источник неэффективности, он возникает из-за вынужденного компромисса, который принимают инженеры при проектировании реального двигателя. Он должны учитывать стоимость и другие факторы при разработке и эксплуатации машинах.

Сравнение КПД двигателей – бензин и дизель

Если сравнить КПД дизельного и бензинового моторов – эффективнее из них, конечно, дизель, причина в следующем:

  1. Бензиновый агрегат преобразует лишь 25 % энергии в механическую, в то же время дизельный до 40%.
  2. Дизельный двигатель, оснащенный турбонаддувом, достигнет 50-53% КПД, а это уже существенно.

Так в чем заключается эффективность дизельного мотора? Все очень просто – не смотря на практически идентичный тип работы (оба мотора являются ДВС) дизель функционирует намного эффективнее. Топливо у него воспламеняется совсем по другому принципу, а также у него большее сжатие. Дизель меньше нагревается, соответственно, происходит экономия на охлаждении, так же у него меньше клапанов (значительная экономия на трении). Кроме этого, у такого агрегата нет свечей, катушек, а значит, нет и энергетических затрат от генератора. Функционирует дизельный двигатель с меньшими оборотами (коленвал не приходится раскручивать). Все это его делает чемпионом по КПД.

КПД дизельного двигателя – заметная эффективность

Показатель КПД для разных двигателей отличается и зависит от некоторых факторов. Бензиновые агрегаты имеют относительно низкий КПД, поскольку для них характерно большое количество тепловых и механических потерь, образующихся в процессе функционирования силовой установки данного типа.

Второй фактор – трение, возникающее в результате взаимодействия сопряженных деталей. Дополнительные потери вызваны работой других систем, механизмов и навесного оборудования и т.д.

Если сравнить дизельный мотор и бензиновый, то КПД дизеля значительно превышает КПД бензиновой установки. Бензиновые моторы имеют КПД в пределах 25% от количества полученной энергии. Иными словами, из потраченных в процессе функционирования мотора двигателя 10 л бензина только 3 л израсходованы на выполнение полезной для системы работы. Остальная часть энергии, образовавшаяся от сгорания бензина, разошлась на различные потери.

Что касается КПД дизельного агрегата атмосферного, то этот показатель достаточно высокий и составляет до 40%. Установка современного турбокомпрессора позволяет эту отметку увеличить до внушительных 50%. Современные системы топливного впрыска, установленные на дизельных ДВС, в совокупности с турбиной позволяют добиться КПД даже 55%.

Механический КПД

Автор: Владимир Егоров Источник: icarbio.ru
21229 1

Индикаторная мощность, развиваемая тепловым двигателем, не может быть в полной мере реализована из-за потерь на преодоление трения и на привод вспомогательных механизмов, но, чтобы улучшить топливную экономичность двигателя, необходимо точно знать все эти потери. Для удобства их оценки введено понятие механического КПД ηm.

Механический КПД Отношение эффективной мощности двигателя к индикаторной.

Наиболее значительная часть потерь вызвана трением в цилиндре, меньшая – трением в хорошо смазываемых подшипниках и приводом необходимого для работы двигателя оборудования. Потери, связанные с поступлением воздуха в двигатель (насосные потери), весьма важны, так как они возрастают пропорционально квадрату частоты вращения двигателя.

Потери мощности, необходимые для привода оборудования, обеспечивающего работу двигателя, включают мощность на привод механизма газораспределения, масляного, водяного и топливного насосов, вентилятора системы охлаждения. При воздушном охлаждении вентилятор подачи воздуха является неотъемлемым элементом двигателя при его испытаниях на стенде, в то время как у двигателей жидкостного охлаждения при проведении испытаний вентилятор и радиатор часто отсутствуют, а для охлаждения используют воду из внешнего контура охлаждения. Если потребляемую мощность вентилятора двигателя жидкостного охлаждения не учитывать, то это дает заметное завышение его экономических и мощностных показателей по сравнению с двигателем воздушного охлаждения.

Другие потери на привод оборудования связаны с генератором, пневмокомпрессором, гидронасосами, необходимыми для освещения, обеспечения работы приборов, тормозной системы, рулевого управления автомобиля. При испытании двигателя на тормозном стенде следует точно определить, что считать дополнительным оборудованием и как его нагружать, поскольку это необходимо для объективного сопоставления характеристик разных двигателей. В частности, это относится к системе охлаждения масла, которое при движении автомобиля охлаждается обдувом масляного поддона воздухом, отсутствующим при испытаниях на тормозном стенде. При испытании на стенде двигателя без вентилятора не воспроизводятся условия обдува трубопроводов воздухом, что вызывает повышение температур во впускной трубе и ведет к уменьшению величины коэффициента наполнения и мощности двигателя.

Размещение воздушного фильтра и величина сопротивления выпускного трубопровода должны соответствовать реальным условиям работы двигателя в автомобиле. Эти важные особенности необходимо учитывать при сопоставлении характеристик различных двигателей или одного двигателя, предназначенного для применения в различных условиях, например, в легковом или грузовом автомобиле, тракторе или для привода стационарного генератора, компрессора и т. д.
Механический КПД различных двигателей

Дизельный ДВС, четырёхтактный 0,70 – 0,85
Двигатель типа Рикардо с гильзовым газораспределением до 0,92
Поршневой, бесшатунный ДВС до 0,94
Двигатель Ванкеля до 0,92
Роторно-лопастной двигатель (РЛД) 0,65 – 0,95
Примечание.
Подробнее о механических потерях в бензиновом и дизельном двигателях в статье «Сравнение механических потерь в бензиновом и дизельном двигателях».

При уменьшении нагрузки двигателя его механический КПД ухудшается, так как абсолютная величина большинства потерь не зависит от нагрузки. Наглядным примером служит работа двигателя без нагрузки, т. е. на холостом ходу, когда механический КПД равен нулю и вся индикаторная мощность двигателя расходуется на преодоление его потерь. При нагрузке двигателя на 50% или менее удельный расход топлива по сравнению с полной нагрузкой значительно возрастает, и поэтому использовать для привода двигатель, имеющий большую, чем это требуется, мощность, совершенно неэкономично.

Механический КПД двигателя зависит от типа используемого масла. Применение в зимнее время масел повышенной вязкости приводит к росту расхода топлива. Мощность двигателя при больших высотах над уровнем моря падает вследствие уменьшения давления атмосферы, однако его потери практически не меняются, вследствие чего удельный расход топлива возрастает аналогично тому, как это имеет место при частичной нагрузке двигателя.

Стоит заметить, что высокий механический КПД не является гарантией высокого эффективного КПД двигателя.

Последнее обновление 02.03.2012 Опубликовано 17.02.2011

Мощность и крутящий момент

Когда показатели рабочего объема одинаковые, мощность атмосферного бензинового двигателя выше, но достигается только при более высоких оборотах. Агрегат нужно сильнее «крутить», при этом потери возрастают, соответственно увеличивается расход топлива. Кроме этого, стоит упомянуть крутящий момент, под воздействием которого повышается сила, которая передается от двигателя на колеса и способствует движению автомобиля. Бензиновые двигатели выходят на максимальный уровень крутящего момента лишь высоких оборотах.

Атмосферный дизель с такими же параметрами достигает пика крутящего момента лишь при низких оборотах. Это способствует меньшему расходу топлива, необходимого для выполнения работы, в результате чего, КПД более высокий и топливо расходуется экономнее.

В равнении с бензином, дизельное топливо образует больше тепла, так как температура сгорания дизтоплива значительно выше, что способствует более высокой детонационной стойкости. Получается, у дизельного мотора полезная работа, произведенная на конкретном количестве топлива гораздо больше.

Анализ теплового цикла

Тепловой цикл включает в себя четыре термодинамических базовых процесса. Вначале происходит преобразование состояния рабочего тела, а затем, возвращение его в исходное состояние: сжатие, получение тепла, расширение и отвод тепла.

Каждый из этих процессов осуществляется по следующей схеме, которая определяет условия реализации цикла:

Кпд теплового двигателя

  1. Изотермический — работа выполняется при постоянной температуре.
  2. Изобарический — рабочий цикл реализуется при постоянном давлении.
  3. Изометрический — тепловой процесс протекает при постоянном объеме
  4. Адиабатический — цикл осуществляется при постоянной энтропии.

Для того чтобы процесс был максимально приближен к обратимому, есть два способа перемещения поршня: изотермический — это означает, что тепло постепенно поступает или выходит из резервуара при температуре, бесконечно отличающейся от температуры газа в поршне, и адиабатический, при котором теплообмен вообще не происходит, газ действует, как пружина.

Таким образом, когда подводится тепло и газ расширяется, температура газа должна оставаться такой же, как и у источника тепла, при этом газ расширяется изотермически. Точно так же позже он будет сжиматься в цикле изотермически, с выделением тепла.

Чтобы выяснить эффективность, нужно проследить за полным циклом двигателя, выяснить, сколько он работает, сколько тепла забирается из топлива и сколько энергии теряется при подготовке к следующему циклу.

Характеристики теплового цикла, связанного с тепловым двигателем, обычно описываются с помощью двух диаграмм изменения состояния: диаграммы PV, показывающей соотношение давление-объем, и диаграммы TS, демонстрирующей пару температура-энтропия.

Для постоянной массы газа работа теплового двигателя представляет собой повторяющийся цикл, и его PV-диаграмма будет выглядеть замкнутой фигурой.

Энергетическая ценность солярки и бензина

В состав солярки входит больше тяжелых углеводородов, нежели в бензин. Меньший КПД такого мотора сравнительно с дизельным агрегатом обусловлен энергетической составляющей бензина и способом его сгорания. При сгорании равного количества бензина и солярки большее количество тепла характерно для бензина. Тепло в дизельном агрегате более полноценно преобразуется в механическую энергию. Соответственно, при сжигании равного количества топлива за определенное количество времени именно дизельный мотор выполнит больше работы.

Помимо этого, нужно учитывать особенности впрыска и условия, способствующие качественному сгоранию смеси. В дизельный агрегат топливо поступает отдельно от воздуха и впрыскивается напрямую цилиндр в конце сжатия, минуя впускной коллектор. Результатом этого процесса становится температура, более высокая, чем у бензинового мотора и максимальное сгорание топливно-воздушной смеси.

Реальные КПД у современных машин

На практике невозможно полностью преобразовать тепло в механическую энергию. Эффективность даже самых совершенных тепловых машин довольно низкая, обычно ниже 50%, а зачастую намного ниже. Тепловая эффективность различных машин, разработанных и используемых сегодня:

  1. В середине XX века типичный паровоз имел КПД около 6%. Это означает, что на каждые 100 МДж сгоревшего угля вырабатывается только 6 МДж механической энергии.
  2. Бензиновый автомобиль работает с КПД равным 25%. Около 75% отбрасывается в виде отработанного тепла.
  3. Класс дизельных автомобилей работает на 35%, поэтому такие модификации более эффективны.
  4. Судовые дизельные двигатели имеют КПД, превышающий 50%.
  5. Современные атомные электростанции имеют КПД порядка 33%, поэтому для выработки 1000 МВт электроэнергии требуется затратить 3000 МВт тепловой энергии, получаемой в результате деления ядер урана. Следующий путь увеличения КПД — это повышение параметров перегретого пара в парогенераторах, что требует увеличения давления внутри котлов и ограничено возможностями металлургии. Современные возможности технологии позволяют получать перегретый пар высокого давления температурой 500−560 С.
  6. Угольные тепловые станции ТЭС с аналогичными параметрами перегретого пара с многоступенчатым подогревом на турбогенераторе могут достигать КПД 48%.

Человечество с момента изобретения паровой машины Джеймсом Уаттом в 1769 году борется за каждый дополнительный процент КПД.

Самое большее что удалось достигнуть — это современные газотурбинные установки с комбинированным циклом из двух циклов Брайтона и Ренкина, с максимальным КПД тепловой машины порядка 55%, в отличие от одного парового цикла на ТЭЦ, которая ограничена КПД 35−48%.

КПД двигателя- Отличия бензинового и дизельного двигателя

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

КПД парового

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

формула кпд

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.

КПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.

Интересно: Существуют некоторые методы повышения КПД бензиновых двигателей внутреннего сгорания:

  1. Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
  2. Свечи зажигания комплектуются отдельными катушками зажигания.
  3. Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

кпд реактивного двс

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Источник https://foksevmash.ru/dvigatel/ot-chego-zavisit-kpd.html

Источник https://motoran.ru/interesnoe/kpd-dvigatelya-otlichiya-benzinovogo-i-dizelnogo-dvigatelya

Источник

Источник




Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *