full screen background image

Электронные системы управления автомобилем

22

Содержание

Электронные системы управления автомобилем

Электронные системы управления автомобилем

Контроль за механическими, гидравлическими и пневматическими системами автомобиля. Управление электроникой. Локальная система связи (Controller Area Network).

Управление электроникой

  • Двигателя. Специальные датчики позволяют произвести измерения конкретных параметров работы двигателя. Количество датчиков впечатляет разнообразием. Среди самых распространённых – датчик давления топлива в контуре низкого давления, датчик давления во впускном коллекторе, датчик положения дроссельной заслонки, датчик массового расхода воздуха .
  • Подвески. Электронные средства важны для управления кинематикой подвески, стабилизаторами поперечной устойчивости, гасящими и упругими элементами подвески. Напрямую с управлением подвески связаны вопросы устойчивости автомобиля.
  • Трансмиссии. Благодаря компьютерным системам, например, оперативно оптимизируется процесс управления фрикционными сцеплениями. В процессе разгона транспортного средства отпадает надобность в получении разности частот вращения коленвала двигателя и ведущего вала коробки передач.
  • Рулевого управления. В том числе, доступно электронное управление подачей тока к соленоиду обводного клапана. . С помощью современных электронных систем можно регулировать тормозное давление на каждом отдельном колесе, влиять на пробуксовку задних колес в режиме притормаживания и оптимизировать управляемость транспортным средством при торможении непосредственно до наступления момента блокировки колес.
  • Инструментальной панели (информационных и предупреждающих приборов).
  • Удерживающих устройств. Как системы безопасности водителя, так и пассажиров.
  • Осветительного оборудования. Компьютерные системы помогают современному водителю управлять светом, внутренним освещением салона, омывателями, стеклоочистителями, системами.

Установка электронных систем управления авто – это возможность снабдить транспортное средство средствами самодиагностики, предупредить водителя о потенциальных сбоях функционировании систем, сделать более рациональной работу персонала автосервиса.

Современные автомобильные компьютеры способны мгновенно оценивать дорожную ситуацию и отклонения от нормального режима управления автомобилем. Они способны вывести автомобиль из сложного заноса, перехватывая управление автомобилем, своевременно предупреждают водителя об опасности, согласуют управление автомобиля с движущимися по соседней полосе автомобилями, и позволяют выбрать наиболее выгодный режим разгона или замедления на слиянии, пересечении дорог.

Компоненты электронной системы управления автомобилем: что есть что?

Современный автомобиль оснащен несколькими электронными модулями управления, десятками датчиков и актуаторами – исполнительными устройствами, способными передавать данные главному процессору.

  • Сенсоры (датчики) – устройства, которые предназначены для ввода информации. Устройства необходимы для отправки сигналов от устройств во внешнюю среду. Датчики способны преобразовать в электрические сигналы перемещение, температуру, давление, скорость, изменение позиционирования. Образно их можно назвать органами чувств автомобильных компьютерных систем. Это «нос», «глаза» и «уши» транспортного средства.
  • Электронный модуль управления представляет собой компьютер (комплекс электронных схем). Объединяет программное и аппаратное обеспечение. Используя сигналы от входящих устройств (датчиков), электронный модуль осуществляет управление различными системами, подсистемами, устройствами вывода (приводами). Позволяет управлять и контролировать мощность, расход топлива, состав отработавших газов и другие важные параметры. Электронный модуль управления является «мозгом» компьютерной автомобильной системы. При этом при существенных изменениях: например, установке турбокомпрессора, электронный модуль управления может быть перепрограммирован.
  • Актуаторы (приводы) – исполнительные устройства, которые представлены миниатюрными электромоторами, электромагнитами. Они и преобразуют электрические сигналы в движение или перемещение органов управления. Приводы справедливо сравнивают с «руками» компьютерных автомобильных систем.

Электронные системы управления автомобилем

  • U= Напряжение (от датчика холостого хода и от датчика полной нагрузки);
  • Q = электросигнал, поступивший от датчика массового расхода воздуха;
  • nK = сигнал, идущий от датчика частоты вращения коленчатого вала;
  • TM = сигнал от датчика температуры охлаждающей жидкости в двигателе;
  • TL = сигнал от датчика температуры воздуха;
  • RAM = Random Access Memory = оперативная память – хранит информацию о быстро-изменяющихся параметрах состояния двигателя и внешней среды;
  • ROM = Read-Only Memory = Постоянное запоминающее устройство – хранит информацию о практически неизменных параметрах;
  • ECU = Электронный модуль управления – процессор, способный вычислить длительность впрыска топлива каждой из топливных форсунок (инжекторов), опираясь на информацию, хранящуюся в оперативной памяти и в постоянном запоминающем устройстве.

Длительность открытого состояния инжектора ti = 2,4 мс позволяет сформировать необходимое соотношение воздуха и топлива в цилиндре двигателя.

Controller Area Network

Современные транспортные средства активно освещают локальной системой связи (Controller Area Network). Мощный процессор, направлен на комплексное управление электронными системами и механизмами автомобиля.

Для обмена информацией модули управления системами автомобиля подключают к этой локальной сети. В этом случае легко решается вопрос с получением сигналов от датчиков и реагированием на изменения положения органов управления.

Controller Area Network

В случае выявления ошибки электронным модулем управления центральный процессор сразу же видит сигнал и запускает процесс, направленный на сохранение работоспособности той или иной системы и поддержание безопасности во время движения. Водитель о возникшей неисправности также сразу получает соответствующий сигнал.

Считывать автоэлектрикам информацию о неисправностях, получить данные с датчиков и исследовать форму электросигнала исходящего от них можно посредством мотор-тестеров. Умения пользоваться этими устройствами становятся необходимыми для каждого современного диагноста, мехатроника.

Среди образовательных продуктов SENSYS на базе платформы ELECTUDE обязательно обратите внимание на тренинг «Автодиагност. Диагностика электронных систем управления двигателя при помощи мотор-тестера». Это эффективная тренировка навыков в области диагностики автомобиля с электронными системами управления.

Устройство современного электромобиля

Устройство современного электромобиля

На форуме не мало статей об электромобилях: их достоинствах, недостатках, будущем и прошлом. Однако, если среднестатистическому автолюбителю задать в лоб вопрос — а как устроен современный электрокар и какие компоненты входят в состав конструкции, то гражданин вряд ли сможет дать внятные объяснения. Электродвижок, аккумуляторная батарея, аппаратура там всякая, да и всё на этом. Ах, да, ещё и экологиячистый он, потому как питается от розетки.

А вот такой вопрос к примеру: есть ли на борту электрокара коробка передач? Сомнительно, что человек никогда не ездивший на электрическом автомобиле сможет дать чёткий правильный ответ. Итак, в теме я хочу в подробностях рассказать об устройстве современного электрокара, дабы пользователи у которых нет его в распоряжении, имели хотя бы поверхностное представление, как устроено это четырёхколёсное, экологически чистое достижение технического прогресса.

Содержание:

  • Что такое электромобиль?
  • Внутреннее устройство электромобиля.
  • Особенности кузова электрического автомобиля.
  • «Сердце» электрокара — что оно из себя представляет?
  • Нужна ли трансмиссия электромобилю?
  • Дополнительные узлы.
  • Аккумуляторная батарея электрокара и способы её подзарядки.
  • Что входит в задачи контроллера?
  • Как в электромобиле работает печка?
  • Общий принцип работы электрокаров.
  • Перспективы электромобилей.

Что такое электромобиль?

screenshot-2020-06-05-scale-1200-izobrazhenie-webp-1200-760-pikselov-masshtabirovannoe-63.png

Внешний вид, кузов и салон электромобиля, а также грузоподъёмность, ничем не отличаются от традиционных средств передвижения оборудованных двигателями внутреннего сгорания. Но в то же время, именно то место, где покоится ДВС у обычной машины, у электрокара преобразовано в значительной степени. Электрический силовой агрегат оказался настолько совершенен, что у инженеров появилась великолепная возможность упростить конструкцию до предела, отказавшись от большого количества традиционных узлов и агрегатов. Что и говорить, затрат на обслуживание и ремонт транспортного средства у обладателей электрокаров существенно поубавилось. Кроме того, такие автомобили стали предельно надёжными в эксплуатации, да и разница в ценах на бензин и электричество — просто вселенская!

Внутреннее устройство электромобиля

2015-576552-bmw-i3-chassis1.jpg

Как уже было сказано выше, электрокар по сравнению с ДВС-никами устроен намного проще и имеет минимальное количество движущихся элементов. Так, для запуска электрического мотора не требуется стартер, а на трансмиссию уже не возложены такие серьёзные обязанности как у авто с ДВС. Причина этого в общем-то проста: электродвигатель предлагает высокий показатель тяги начиная с самого момента запуска.

Совершенство электромоторов даёт их обладателям ещё несколько преимуществ:

  • нет требуется система охлаждения;
  • не нужна и выхлопная система, а значит не будет шума и вредных выбросов в атмосферу.

Каждый уважающий себя автогигант и не только, выделяет на разработку электромобилей огромные средства, прекрасно понимая, что за ними будущее и от этого никуда не деться. Так почему бы не начать всё как можно раньше?

Основные компоненты у большинства электромобилей такие:

  • электрический силовой агрегат (может быть один, а может и несколько);
  • аккумуляторная батарея;
  • упрощённая трансмиссия (ступенчатая либо бесступенчатая);
  • тяговый инвертор;
  • интегрированное зарядное устройство;
  • электронный контроллер управления компонентами системы.

Особенности кузова электрического автомобиля

1524391889-nissan-leaf.jpg

Как должен выглядеть современный электромобиль? Очень интересный вопрос, на который кстати, имеется множество ответов. Дизайнеры, как правило, стараются выделить «электрички» из общего потока однотипных транспортных средств оснащённых ДВС, придавая своим творениям футуристический, смелый и даже диковинный образ. Этим стилисты хотят подчеркнуть то обстоятельство, что их разработка тесно связана с будущим. Но в то же время, имеет место и масса электрокаров, которые внешне можно легко спутать с традиционными машинами, к которым все привыкли с детства. Кроме того, производитель, дабы снизить затраты на производство своей продукции, часто идёт более рациональным путём: кузов не требующий глобальных переделок, просто берётся от «старшего брата» с двигателем внутреннего сгорания, поэтому внешне, обе модификации практически идентичны.

При создании электромобиля с нуля, особое внимание уделяется аэродинамическим свойствам его кузова и делается это по той причине, что автомобиль с низким сопротивлением воздушным массам, как и в случае с обыкновенными авто, будет затрачивать меньше энергии. Однако в случае с электрической машиной, это намного важнее, так как современные электрокары не могут на данный момент похвастать внушительным пробегом на одном заряде. Есть конечно и исключения, но их не много и всё равно они грандиозно проигрывают автомобилям с ДВС.

Вот пример: всенародно любимый Форд Фокус работающий на бензине, сподобился проехать на полном баке 1789 километров, в то время как элитный электрокар Tesla Model S, может протянуть на полном заряде всего 500 километров. А знаете, сколько пройдёт электрическая вариация Ford Focus Electric? 185 километров, всего-навсего! Как думаете, для кого показатель аэродинамического сопротивление окажется критичней? Думается, после таких технических характеристик, всем, итак, понятно, почему разработчики борются за каждый лишний километр пробега электромобиля любыми способами.

«Сердце» электрокара — что оно из себя представляет?

1521650385-img-0604-1024.jpg

К электрическому силовому агрегату устанавливаемому на электромобили, инженеры предъявляют особые требования, причём они достаточно жёсткие. Не первом месте у разработчиков стоит мощность мотора, варьирующаяся от нескольких десятков, до нескольких сотен кВт. Производители ставят на свои электрифицированные средства передвижения разные типы электродвигателей, отличающиеся устройством, принципом запитки и управления. Это могут быть электродвигатели постоянного и переменного тока, асинхронные и синхронные, коллекторные и бесщёточные.

Но, какой бы электрический мотор не установили конструкторы на своё детище, его характеристики, надёжность и простота эксплуатации весомо перебивают возможности ДВС.

Преимуществ тут целый набор:

1. Если брать по коэффициенту полезного действия, то тут у электромотора бесспорное превосходство над двигателем внутреннего сгорания: КПД электрического агрегата — 90-95%, КПД традиционных ДВС — 22-60%.

2. Максимальный крутящий момент доступен практически с первых секунд запуска электрического силового агрегата и кроме того, он держится на максимуме при любых оборотах.

3. Электродвигатели, которые устанавливаются на среднестатистический электромобиль, не нуждаются в принудительном охлаждении.

4. Электромотор может функционировать как генератор (в режиме рекуперации).

5. Электрический двигатель практически не нуждается в обслуживании.

Нужна ли электромобилю трансмиссия?

visio-m-191014-1024-03.jpg

Это очень интересный вопрос, на котором был сделан акцент ещё в начале статьи, ведь несведущие юзеры действительно не знают, есть ли на электрокарах коробка передач, вернее они думают, что по традиции точно есть. Так вот, коробка передач в электрической машине в привычном понимании практически не используется, её место занимает простенький редуктор с одной ступенью. Он преобразует высокие обороты электромотора в более низкие, которые требуются для передачи на ведущие колёса транспортного средства.

Очень эффективным решением является мотор-колесо, когда весь электродвижок дислоцируется непосредственно в ступице колеса. Поэтому, сами понимаете, потребность в трансмиссии здесь просто отпадает сама собой. Однако у такой компоновки имеет место и недостаток: по причине увеличения неподрессоренной массы на колёсах, даёт о себе знать ухудшение управляемости авто. Подробнее о мотор-колёсах для электромобиля писалось в этой теме, так что, данная разработка без сомнений имеет перспективы, но, к сожалению, развивается всё это мероприятие довольно медленно.

Конечно, бывают случаи, когда коробка передач всё-таки присутствует на электрифицированном автомобиле, но здесь речь идёт о «домашних» переделках: типа ВАЗовская классика и иже с ней с электродвигателем под капотом. Естественно, это не электромобиль с чистого листа, а всего лишь переделанный ДВС-ник. Подробнее от таких технических манёврах можно узнать из этой статьи.

Дополнительные узлы

4588269s-1920.jpg

Электронная составляющая современных электрокаров развита по полной программе, ведь на ней лежит большая ответственность. Она должна обеспечивать слаженную работу всех датчиков и систем, эффективно отслеживать заряд аккумуляторной батареи, дабы электрокар просто не остановился в самый неподходящий момент прямо посредине дороги, да много чего ещё делает умная и сложная электроника.

Основное, что здесь отличает электрокар от обычной машины — зарядное устройство, предназначенное для того, чтобы была возможность заряжать «электричку» от бытовой розетки. Естественно, как и у обычных авто, на борту электрических имеются осветительные приборы и как правило, максимально энергоэффективные, сами понимаете, для электрокара экономия электроэнергии, одна из первостепенных задач, ведь каждый километр пробега на вес золота. Комфорт в салоне обеспечивает такое же оборудование, как и в стандартных машинах: электропакет, кондиционер, электрический усилитель рулевого управления, аудиосистема и т. д.

Также на электрической машине может быть установлено такое интересное приспособление, как имитатор звука работы двигателя внутреннего сгорания. Изобретение скажем так действительно полезное, ведь электромобили настолько тихие при движении, особенно на низких скоростях, что пешеход может их легко не заметить, создав тем самым аварийную ситуацию.

Аккумуляторная батарея электрокара и способы её подзарядки

На современных электромобилях широко используются высокоэффективные литий-ионные аккумуляторы, которые предлагают своим обладателям срок службы до десятка лет. В то же время, у этих изделий имеются и существенные недостатки: тяговая Li-ion батарея является самым капризным и дорогостоящим компонентом любого электрокара.

Однако литий-ионные АКБ не единственная разновидность электронакопителей наилучшим образом подходящих для электрокара: в настоящее время ведутся работы по внедрению литий-полимерных аккумуляторов и суперконденсаторов. Многие лидеры мирового автопрома грозятся в ближайшее время поставить такую продукцию на поток и тогда, электрокары ещё больше приблизятся к техническому совершенству.

В зависимости от ёмкости батареи установленной на машине, на её полную подзарядку может потребоваться 8-12 часов, но процесс можно ускорить в значительной степени, правда с ущербом для накопителя. Есть специальные зарядные комплексы, позволяющие «заправить» агрегат на 80% всего за 30 минут. В некоторых странах можно воспользоваться специальными «обменными пунктами», на которых севший аккумулятор можно легко поменять на заряженный такого же типа.

Разработчики идут на разные ухищрения, чтобы увеличить пробег машины на одном заряде и одним из таких фокусов, является использование солнечных панелей, позволяющих хоть и немного, но подзаряжать электромобиль во время движения.

Что входит в задачи контроллера?

h259a40f02d03477c91a8453a1095de51o.png

Электроника преобразовывает постоянное высокое напряжение, отдаваемое электробатареей, в требуемое в определённый момент. На контроллер возложены обязанности по энергосбережению, обеспечению комфорта при движении, также данный элемент следит за безопасностью водителя и пассажиров.

Конкретно, устройство предлагает такие функции:

  • управление высокими токами и напряжением;
  • регулировка тяги и динамики;
  • обеспечение оптимального расхода электроэнергии;
  • мониторинг состояния аккумуляторной батареи;
  • управление рекуперацией торможения;
  • зарядка обыкновенного аккумулятора на 12 V (обычная батарейка также присутствует на борту электромобиля).

Как в электромобиле работает печка?

electricheskij-obogrevatel-avto.jpg

Зимой с электромобилем дела обстоят не так, как с его оппонентами оборудованными двигателями внутреннего сгорания, но в любом случае, у печки электрокара принцип работы прост: её спирали нагреваются за счёт электроэнергии аккумулятора. Несмотря на то, что в последнее время в сети всё чаще встречается информация об инновационных разработках касающихся подачи тепла и его источников, принцип обогрева внутреннего пространства электрокара, остаётся вполне традиционным.

Акцент на энергосбережении вынуждает разработчиков делать обогрев салона максимально эффективным: температура внутреннего пространства доходит до комнатного показателя или даже выше, всего за несколько минут. Особое внимание уделено подогреву рулевого обода и посадочных мест, не отбирающего много энергии у АКБ.

Но, как ни крути, а печка электрокара может забрать у накопителя весьма солидную долю заряда, что естественным образом повлияет на сокращение пробега на одном заряде. Если взять за пример такой популярный электрический автомобиль как Ниссан Лиф, то, как показывает опыт эксплуатации большого количества обладателей этой машины, в летнее время на одном заряде можно вытянуть 150 километров, однако если за бортом температура хотя бы -2 градуса, от 150-километрового пробега не остаётся и следа — можно рассчитывать максимум на 90-110 км. Но и это ещё не всё: когда столбик термометра опускается до температуры -15, то преодолеваемая дистанция становится просто смехотворной — 40-80 километров, это во зависимости от поддерживаемой температуры и стиля езды.

Из всего выше сказанного можно сделать вполне логический вывод: зима — самое худшее время года для езды на электрокаре и если в нём нет такой острой необходимости, то зимой лучше отдать предпочтение общественному транспорту.

Общий принцип работы электрокаров

В общем, подавляющее количество современных электромобилей имеют довольно простое устройство, а отличия между ними наблюдаются лишь в отдельных моментах организации функционирования оборудования.

Для того, чтобы электрокар мог ездить, в его распоряжении должно быть не так уж и много:

  • электрический силовой агрегат;
  • аккумуляторная батарея;
  • контроллер.

От электронакопителя ток подаётся на контроллер, коммутируется в тот, который нужен в конкретный момент и далее направляется к электродвигателю. Регулировка количеством поставляемой на мотор энергии осуществляется посредством педели газа — при воздействии на неё, будет формироваться соответствующий сигнал. Сопоставляя эти данные с данными других систем и датчиков, контроллер регулирует мощность поставляемую на силовой агрегат.

Перспективы электромобилей

perspektivy-elektromobilej-v-nepale.jpg

Конечно, у электрокаров имеется большое количество неоспоримых преимуществ над ДВС-никами и если бы не критическая зависимость от источников питания и завязанный на это запас хода (естественно, куда более скромный по сравнению с бензиновыми и дизельными оппонентами), то вполне вероятно, ДВС не занимали бы лидирующие позиции в автопроме целое столетие. Электрическую тягу на транспортных средствах начали использовать ещё за 50 лет до того, как придумали двигатели работающие на горючем и кстати, первые рекорды скорости были установлены именно электромобилями.

Что касается России, то электромобили у нас всё ещё воспринимаются рядовыми гражданами в штыки: стоят они для добропорядочного человека непомерно дорого, да и «заправлять» по большому счёту их просто негде, кроме как у себя дома, томясь многочасовым ожиданием. Но в то же время, российские производители уже взяли прицел на мировой тренд, предложив общественности такие разработки как «Ока электро», «Лада Ellada» и «Лада Веста EV».

Могут ли они предложить своим владельцам что-то наподобие американской Теслы или хотя бы Ниссан Лиф на худой конец? Навряд ли! Отечественные разработки являются скорее суррогатами, нежели альтернативами зарубежных электромобилей. Причём предпочтение отечественному производителю, мало кто отдаёт — все берут прорекламированную продукцию, а не изделие от АвтоВАЗа, которые и с двигателями внутреннего сгорания, явно не конкуренты оппонентам из зарубежья. Кроме того, в отечественных разработках используются импортные детали, без которых на данный момент просто не возможно обойтись российскому автопрому, решившему поддержать «электромобильный» ход.

Заключение

Однозначно, электромобиль перед классическим исполнением транспортных средств остаётся в выигрыше практически во всём. Очевидно, будущее как раз именно за ним, ну а пробелы с высокой себестоимостью и несовершенством аккумуляторных батарей, со временем неизбежно сойдут на нет, нужно только подождать и всё будет как нужно, как было в случае с тем же ДВС.

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Умные автомобили: история и перспективы

Картинки по запросу smart automobileНаряду с развитием механических систем автомобиля инженеры постоянно стремились добавить что-то в электронную начинку, сделать машину безопаснее, управляемее и умнее. Сегодня для этого есть все предпосылки: ИТ-отрасль развивается огромными темпами, автопроизводители готовы сотрудничать и вести перспективные разработки, корпорации вкладываются в развитие автотранспорта. Между тем, «ум» автомобилей развивался поступательно, на протяжении более полувека. Всё это время он принимал разные формы и уходил в разные концепции: от безопасности до развлечений. Современный виток эволюции зашёл так далеко, что уже непонятно, софт определяет железо или железо – софт.

Вспомним, как всё начиналось

Первой технологической революцией в автомобилестроении стал интерес автомобильных компаний к электрическим стартерам — их впервые установили в 1911 году. Затем нововведения стали касаться удобства водителя и даже его развлечений за рулём: в 1925 году появился прикуриватель, в 1930 — радио, в 1956 — усилитель руля, в 1970 — кассетная дека, в 1984 — надувные подушки безопасности. Годом позже — проигрыватели компакт-дисков, в 1994 году — панель приборов компьютерной диагностики автомобиля, в 1995 — GPS, в 2000 — USB и Bluetooth, первые ласточки «подключённого» ко всему автомобиля.

Первый опыт создания умной машины произошел в середине ХХ века. General Motors Firebird II — четырёхместный автомобиль 1956 года с независимой подвеской. Под титановым корпусом скрывался газотурбинный двигатель Whirlfire GT-304 на 200 л.с., электропакет и интегрированная система кондиционирования воздуха уровня не хуже, чем в начале XXI века. Firebird II в плане дизайна и эргономики продолжил версию автомобиля 1953 года, который был назван «реактивным самолётом на колёсах» (разработчики и инженеры, действительно, вдохновлялись концептами истребителей того времени). Однако в Firebird II впервые была применена структура для поездок по шоссе будущего — сложная система управления, которая должна была взаимодействовать с электрическим проводом, встроенным в проезжую часть, чтобы посылать сигналы и служить ориентиром для новейших автомобилей. Предполагалось, что электромагнитное поле минимизирует опасные ситуации на дороге, сократив человеческий фактор. По тем временам это была слишком смелая модель, которая произвела фурор на выставках, но так и не попала в серийное производство.

Шоссе будущего строились в Европе и США. Первым серийным автомобилем, который стал реально с ними взаимодействовать, был Citroen DS — легендарная легковушка, занявшая третье место в рейтинге автомобилей века. Маломощный двигатель 75 л.с. ничем не выделялся в те времена, но зато автомобиль отличала передовая трансмиссия, объединённая с рулевым управлением, тормозами и гидропневматической подвеской. Такая конструкция опередила развитие автомобилестроения на много лет вперёд. Citroen DS умел взаимодействовать с шоссе с помощью электрического сигнала, однако ни о каком самостоятельном автопилоте не шло и речи — это была больше забава. Кстати, именно невероятная популярность, передовые технологии и пусть и относительно иллюзорный, но автопилот сделали этот Citroen летающим автомобилем Фантомаса.

Эксперименты с бортовыми компьютерами в 60-70 гг. проводились, но так и не вошли в серию. Стоит вспомнить экспериментальный Chrysler Plymouth, который оснастили бортовым компьютером (ну, насколько можно назвать бортовым компьютер, который занимал половину заднего сидения) и генератором для питания системы, выведенным на крышу автомобиля. Лабораторные испытания проводились в течение 10 лет, но ни о какой серийности производства не могло быть и речи.

Тем не менее, ни инженерная мысль, ни фантазия футуристов не останавливались ни на минуту — человечество искало в автомобилях не только роскошь или средство передвижения, но и умного помощника, способного облегчить жизнь, сделать безопасными дороги, работать за человека. Такое стремление получило отражение и в кинофильмах — после нескольких фильмов с «говорящими» машинами настоящими хитами стали серия фильмов о Джеймсе Бонде с его навороченными автомобилями и, конечно же, легендарный «Рыцарь дорог». Умный, обладающий чувством юмора автомобиль КИТТ на базе Pontiac Firebird Trans AM не только развивал скорость под 500 км/ч и был практически неуязвим, но и умел разговаривать, ездить на полном автопилоте и контролировать все электронные устройства на расстоянии.

КИТТ внутри

Наверняка утилитарная реальность не совпала с мечтаниями инженеров прошлого — на формирование облика современных умных автомобилей оказала влияние коммерция и пресловутая бизнес-целесообразность.

  1. Автоконцерны стали стремиться удовлетворять требования массового потребителя, который избалован ИТ-индустрией. Умом автомобилей стал круиз-контроль, медиа-устройства для проигрывания контента, встроенные телефоны в 80-90-е и проч.
  2. Производители планшетов и смартфонов стали лоббировать свои интересы, чтобы встроиться в автомобили (например, в некоторые автомобили BMW встроены планшеты Samsung).
  3. Пользователи стали предъявлять повышенные требования к электронной начинке: от развлекательного контента до систем безопасности и возможности работать с оповещениями по состоянию автомобиля.

Современные умные автомобили

Один из первых прототипов предложила компания Google — Google Car. Это мини-автомобиль с беспрецедентным уровнем автономности. Машина рассчитана на двух человек, имеет два двигателя, нестандартные материалы кузова, полностью электрическая, развивает скорость до 25 миль/час (чуть больше 40 км/ч), управляется с кнопки пуска и не требует присутствия человека кроме как в роли пассажира. Естественно, она интегрирована с сервисами Google — на центральной консоли можно посмотреть ролики и фильмы на Youtube, поработать с почтой, посерфить в Chrome. Кстати, автомобиль построен также Google, поскольку предыдущие партнёры Lexus и Toyota ожидаемо накладывали множество ограничений на рискованные эксперименты. Выйти на массовый рынок личного автотранспорта крайне сложно, и в декабре 2016 года Google (точнее, холдинг Alphabet) свернул проект по созданию своего беспилотного автомобиля. Компания продолжает разрабатывать автопилоты, но уже для обычных автоконцернов.

Операционные системы автомобилей

Наверняка у большинства читателей первым в голову придёт OS Android. Действительно, эта операционная система присутствует в автомобилях, причём не только на встроенных планшетах. Распространение системы началось с создания альянса Open Automotive Alliance, в который вошли собственно Google, NVIDIA, Audi, General Motors GM, Honda и Hyundai. Нельзя забывать и о Tesla, на борту которой стоят крупные 17-дюймовые дисплеи на базе Android. Однако пока что использование этой операционной системы нацелено в основном на создание информационной и развлекательной начинки автомобиля, включая навигационные функции. В скором будущем новая платформа должна будет обеспечить увеличение комфорта и рост уровня безопасности автомобилей.

iOS не отстаёт от конкурента и, пока весь мир ждёт к 2020 году первый i-мобиль или i-Car (поговаривают, это будет что-то беспилотное на базе BMW i3), Apple реализовала систему Apple Carplay, которая позволяет соединить систему управления автомобилем с iPhone от 5-го и выше. Пока не все автомобили поддерживают систему, но большинство топовых производителей уже в списке. Конечно, и здесь об операционной системе не идёт речи — просто интеграция устройств на iOS в инфраструктуру бортового компьютера. Опять развлекательный аспект выходит на первое место — здесь и разговоры hands-free, и голосовое управление iTunes. Кстати, разработка беспилотника Apple строго засекречена — попробуйте найти что-то, кроме общих фраз, про проект Project Titan.

Microsoft революцию тоже не совершил, но выбрал другой вектор развития и нацелился на голосовое управление функциями автомобиля, чтобы не отвлекать водителя от дороги. То, что происходит с ПО Microsoft для автомобилей можно описать как полностью встроенный в машину смартфон. Ну то есть можно ждать шуток из разряда «подожди, я телефон припаркую».

Уже в этом году пройдёт тестирование автономной системы вождения Drive Me от компании Volvo. Опять же, назначение автономки — пока удобство водителя и безопасность движения в том случае, если хозяин автомобиля захочет, к примеру, пообедать за рулём или набрать пару сообщений в мессенджере. Мониторить окружающую обстановку, включая передвижение пешеходов, можно будет с помощью хитрой комбинации радаров, камер и лазеров. Volvo акцентирует внимание на том, что они делают реальные системы для реальных дорог и потребителей.

К испытаниям Volvo планирует привлечь самых обычных людей разных полов, возрастов, с разным водительским стажем. В ходе тестирования компания планирует собрать «терабайты данных» о безопасности, юзабилити, потребительском опыте, транспортных потоках, эффективности использования энергии. На основе этих данных система будет дорабатываться. Базовый автомобиль для тестирования — XC90s.

В 2015 году на Женевском автосалоне итальянское ателье Italdesign Giugiaro представило автомобиль GEA (есть версия, что это был отчасти прототип Audi A9, кто-то ссылается на ближайшее будущее Audi) с полностью автономным управлением. В связи с тем, что водителю за рулём (штурвалом-джойстиком) делать особенно нечего, в GEA предусмотрено три режима: рабочий кабинет, тренажёрный зал и комната отдыха. В режиме Business салон предоставляет два 19-дюймовых монитора и разворот сидений для удобной беседы. Wellness-режим даёт инструкцию по выполнению упражнений на ручках, встроенных в заднее сиденье. Наконец, режим Dream обеспечивает водителя обширной кроватью для сна. Ко всем вариантам работы подбирается атмосфера и освещение. Автомобилем можно управлять со смартфона через специальное приложение. Технические характеристики концепта тоже выдающиеся: 4 двигателя общей мощностью 775 л.с., длина 5370 мм, максимальная скорость 250 км/ч.

Черты Audi явно считываются

Нельзя оставить обзор умных автомобилей без внимания к легендарной и, пожалуй, самой немецкой марке — BMW. Баварский автопроизводитель редко оглядывается на других и идёт в арьергарде рынка за счёт дизайна и технологий. Согласно отчёту KPMG, концерн лидирует в технологиях умных и беспилотных автомобилей.

В случае с умными автомобилями история такая: кроме беспилотных версий, о которых скажем чуть ниже, есть серийные автомобили, которые используют всё, что было создано для смарткаров нашего времени. На начало 2017 года среди лидеров — BMW i8, гибридный BMW X5 PHEV и BMW 7 (который, кроме всего прочего, проецирует данные приборной панели на лобовое стекло, имеет сильно обновлённый iDrive и воспринимает управление сенсором жестами). Эти модели BMW (как и другие) оснащены большим количеством датчиков и умны именно с точки зрения безопасности — они анализируют ситуацию на дороге и, имея в памяти огромное количество информации, буквально прогнозируют неблагоприятные события, тем самым предотвращая их. Также в BMW встроена SIM-карта оператора Vodafon, которая работает в роуминге в сетях практически любого сотового оператора мира (в России — всех) и передаёт важную информацию: водителю — о необходимости очередного ТО, уровне заряда аккумулятора, ближайших автосервисах, пунктах помощи и даже гостиницах, ресторанах и проч., а от водителя — о критических ситуациях на дороге. Так, можно вызвать помощь одной кнопкой SOS и оператор получит данные владельца и точные координаты происшествия. Если до кнопки дотянуться невозможно — автомобиль сам передаст сигнал бедствия специальным службам.

Х5 с гибридным двигателем

Совместно с Mobileye и Intel компания BMW разрабатывает беспилотную программно-сетевую платформу iNEXT, которая будет предназначена как для установки на автомобилях концерна, так и для продажи другим автопроизводителям. В 2021 году BMW планирует выпустить робомобиль третьего уровня, который по-прежнему будет требовать присутствия человека (четвёртый уровень — возможно заниматься чем угодно, кроме вождения, пятый уровень — автомобиль сам поедет, куда вам (ему?) надо).

От колёс просто невозможно оторвать взгляд

Программное обеспечение автомобилей

AUTOSAR (AUTomotive Open System ARchitecture) — организация, которая своей целью имеет создание стандартизированной открытой структуры программного обеспечения для электроники автомобиля, кроме информационно-развлекательных систем. Такой софт должен быть масштабируемым (распространяться на разные автотранспортные средства и платформы), локализируемым, соответствующим требованиям к безопасности и ремонтопригодным на всём сроке жизни автомобиля. Стандарт AUTOSAR распространяется на электронику кузова, силового агрегата, шасси и системы безопасности, а также на мультимедийные системы, телематику и интерфейс взаимодействия водителя с автомобилем.

Стандартный протокол бортовой электроники FlexRay — высокоскоростной сетевой протокол для автомобилей, разработанный мировым консорциумом FlexRay, основоположником которого является компания NXP совместно с BMW, DaimlerChrysler, Bosch, GM и Volkswagen. Скорость передачи данных по нему достигает 10 Мбит/с. Он в десятки раз быстрее современной шины CAN (Controller-Area Network) и тем более — уже устаревшего и совсем медленного диагностического OBD (On Board Diagnostic). Контроллеры FlexRay будут работать для целей контроля тех частей автомобиля, в которых вопрос современной диагностики равен вопросу жизни и смерти: двигателя, трансмиссии, подвески, тормозов, рулевого управления. Также протокол в принципе должен расширить возможности бортового управления.

Automotive Safety Restraints Bus specification (ASRB 2.0) — стандарт электронных систем автомобиля, отвечающих в том числе за физическую безопасность водителя и пассажиров.

Автопилоты, автопарковки и системы навигации — программное и аппаратное обеспечение, без которого вождение скоро будет сложно представить. К тому же, на эти системы уже сейчас возложена функция безопасности и защиты (например, вызова спецслужб в случае серьёзного ДТП), а в будущем эта функциональность только увеличится.

Своё применение находят в автомобилях и типичные для IoT (интернета вещей) решения: так, например, GM сотрудничает с IBM в целях применения Watson для умных автомобилей. Нельзя не упомянуть главную проблему ПО для автомобилей — оно должно учитывать особенности железа, которое может использоваться даже более десяти лет, а значит, должны быть передовые возможности обновлений. А ещё лучше — софт, опережающий время.

Подробно о ПО умных автомобилей можно почитать в материале Compress.

О Tesla написано настолько много и подробно, что даже скучно рассказывать. Но не упомянуть этот проект просто невозможно. Прежде всего, из-за уникальной для серийного автомобиля автономности: набор сенсоров защищает автомобиль от столкновений, а 360-градусная камера распознаёт дорожную разметку, перекрёстки, другие автомобили и транспортные средства, пешеходов. Таким образом, автомобиль самостоятельно регулирует управления и скорость движения. В процессе использования автомобиля автопилот самообучается и заодно передаёт данные на серверы компании Tesla Motors, сотрудники которой проводят анализ и совершенствуют систему.

В основе электронной начинки Tesla Model S лежит информационно-управляющая система на двух процессорах Tegra3, первый из которых отвечает за приборы и датчики, а второй — за развлечение и информирование водителя посредством 17-дюймового дисплея. Программное обеспечение основано на ядре Linux и специальной оболочке, разработанной в компании Tesla Motors. Обновления ПО выпускаются достаточно часто и загружаются «по воздуху».

Tesla Model X

Faraday Future — калифорнийский стартап, финансируемый китайской компанией LeEco, которая пытается создать свою экосистему и производить буквально всё. Уже из названия проекта ясно, что речь идёт об интеллектуальном электромобиле и из него же очевидно, что главным конкурентом создатели стартапа считают Tesla. После череды слухов о банкротстве и провале проекта компания презентовала серийный полностью электрический кроссовер Faraday Future FF 91 в довольно необычном обтекаемом дизайне кузова. Автомобиль получился габаритным (5250 мм в длину, 3200 мм колёсная база) и эргономичным, с низким (0,25) коэффициентом лобового сопротивления. Нативная платформа Variable Platform Architecture (VPA) включает 4 электромотора и блок аккумуляторов. Мощность электромоторов в совокупности — 1050 л.с., разгон до сотни за 2,4 секунды.

Технологии Faraday также впечатляют: 10 камер кругового обзора, 13 радиолокационных датчиков, 12 ультразвуковых датчиков и один сканер 3D LIDAR (лазерная версия радара, та самая пипка на капоте). В автомобиле можно настраивать учётные записи FFID, которые «узнают» водителя в лицо и тут же настраивают опции автомобиля именно под него.

К слову, этот кроссовер — ещё мягкий вариант китайского электроавтомобиля, первый концепт имел сверх дерзкий дизайн. Дела у компании идут с переменным успехом: в ноябре 2016 LeEco заявил о нехватке средств и жесткой экономии, а буквально несколько дней назад на CES в Лас-Вегасе кроссовер был представлен публике, но не без технических сбоев. Запуск серийного производства запланирован на 2018 год — скоро увидим, чем закончится история китайского конкурента Tesla.

Одна из самых перспективных сфер применения платформ для беспилотных автомобилей — грузовой транспорт, который применяется в строительстве, промышленности, сельском хозяйстве. Mercedes создал беспилотник Future Truck 2025, предназначенный для передвижения по крупным трассам. Автопилотные функции реализованы на основе двойных камер, датчиков, радиолокации и технологии «мёртвой точки». Специальные радары прослушивают и просматривают дорогу, оценивая рельеф или, например, улавливая спецсигналы автомобилей экстренных служб. Во время автопилотирования водитель должен находиться внутри но может комфортно расслабиться с планшетом в руках. Для управления машиной в городских условиях такой фурой нужен водитель.

Примерно так мы и представляем дальнобойщика будущего

К тестам беспилотной версии приступил и российский КамАЗ. «КамАЗ» совместно с Cognitive Technologies и «ВИСТ Групп» реализует проект беспилотного автомобиля, который будет сам управлять педалями газа и тормоза, приводом руля и автоматической коробкой передач. Базой для прототипа стал серийный КамАЗ-5350, на котором установлены четыре видеокамеры, три радара и лидар — активный оптический сенсор, выполняющий роль лазерного дальномера. В кабине размещены приводы органов управления и два компьютера, соединенных локальной сетью Ethernet. Беспилотный КамАЗ использует технологию пассивного компьютерного зрения: грузовик менее, чем за 0,3 секунды обнаруживает препятствия на своём пути, распознаёт дорожные знаки и сигналы светофора. В отличие от зарубежных беспилотных автомобилей, КамАЗ проникся российской реальностью и не работает на основе распознавания дорожной разметки, нанесённой на идеально ровное шоссе.

Можно уверенно сказать, что мы живём в эру умных автомобилей, которые будут относиться к одной из трёх групп: напичканные электроникой привычные машины, беспилотные автомобили и электронные помощники. Лишний пример тому — не упомянутые выше, но присутствующие на рынке смарткаров VW iBeetle с экосистемой Apple — все бортовые электросистемы интегрированы с iPhone, и даже громоздкий и неуклюжий с виду пикап Ford F-150 с голосовым управлением. Это серийные автомобили, доступные к покупке и готовые работать на своего хозяина. В любом случае, очевидно, что развитие электронной и программной составляющей автомобилей будет развиваться, ища компромисс между потребностями в безопасности, информационной составляющей и развлечением.

Но больше всего хочется, чтобы несмотря на огромные возможности электроники осталось субъективное, но такое главное — удовольствие за рулём.

Источник https://pro-sensys.com/info/articles/obzornye-stati/elektronnye-sistemy-upravleniya-avtomobilem/

Источник https://natoke.ru/articles/224-ustroistvo-sovremennogo-elektromobilja.html

Источник https://integral-russia.ru/2017/04/24/umnye-avtomobili-istoriya-i-perspektivy/

Источник




Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *