Характеристики двигателей легковых авто

Содержание

Характеристики двигателей легковых авто

Как все знают, большинство автомобилей имеют в качестве мотора — двигатель внутреннго сгорания. ДВС достаточно сложен в конструкции, особенно если автовладелец не имеет автомобильного образования.

При покупке автомобиля мы, конечно же, интересуемся мощностью двигателя, но существует еще множество характеристик, которые следовало бы знать.

Давайте их разберем.

1. Количество цилиндров. Современные автомобили имеют от 2 до 16 цилиндров, от них зависит мощность, расход топлива. Однако, эти показатели могут сильно отличаться на разных двигателях с одинаковым количеством цилиндров.

2. Расположение цилиндров. Наиболее распространены двухрядное (V-образное) расположение цилиндров и рядное (последовательное). Здесь угол развала цилиндров играет важную роль. Малый угол понижает инерционность, вес, но имеет недостаток — более быстрый перегрев. Большой угол позволяет снизить центр тяжести, улучшает подачу масле и охлаждение, но повышает инерционность и ухудшает динамические характеристики.

Стоит отметить, что двигатель с рядным расположением и четным количеством цилиндров работает наиболее тихо и с наименьшим уровнем вибраций.

3. Объем камеры сгорания (объем двигателя).

Чем больше объем, тем выше мощность и расход топлива.

4. Материал двигателя. Как правило двигателя изготавливают из чугун и ферросплавов (большой вес и наибольшая прочность), аллюминия и его сплавов (средняя прочность и малый вес) или магниевых сплавов (высокая прочность, малый вес и высокая цена). По этому показателю можно судить только об уровне шумов, вибраций и ресурсе двигателя.

Наиболее важными являются следующие характеристики двигателя внутреннего сгорания:

1. Мощность. Она определяет время разгона автомобиля и скорость. Измеряется в кВт или л.с. (лошадиных силах).

2. Крутящий момент определяет максимальное тяговое усилие, измеряется в Ньютон-метрах (Нм). Определяет способность автомобиля ускоряться на низких оборотах, влияет на скорость.

3. Максимальное число оборотов коленчатого вала (об/мин).

Чем выше этот показатель, тем более динамичным и резким будет автомобиль.

4. Расход топлива. Расход измеряется в литрах на 100 километров. В городском, смешанном или загородном циклах он будет различен.

5. Тип потребляемого топлива. Топливом для авто может быть бензин, дизель, газ. Бензин характеризуется октановым числом (числом воспламеняемости). При снижении октанового числа падает мощность и снижается ресурс двигателя. При повышении сверх нормы — мощность повышается, но ресурс двигателя также cнижается. Также при повышении октанового числа одним из негативных последствий является повышенная теплоотдача, что может приводить к раннему перегреву двигателя.

6. Расход масла (л/100км). Для исправной машины максимальный показатель составляет 1л/1000 км.

7. Марка масла, используемая в двигателе. Стандартное обозначение 10W40, 15W40. Первое число — густота масла, второе — его вязкость. Более вязкие и густые масла повышают надежность и прочность двигателя, менее густые — улучшают динамические показатели.

Никогда не заливайте трансмиссионные масла в двигатель. Это приведет к его неисправности.

* — поля обязательны для заполнения

Укажите Ваш E-mail, на него придет
пароль от Вашего личного кабинета.

Характеристики двигателей легковых авто

Двигатель внутреннего сгорания (ДВС) автомобиля служит для преобразования энергии топлива в механическую энергию.

Размеры двигателя машины зависят от её модели, модификации и года выпуска.

Характеристики ДВС, влияющие на его выбор:

  • Объем (см 3 );
  • Мощность (л.с.);
  • Диаметр цилиндра (мм);
  • Ход поршня (мм);
  • Степень сжатия;
  • Крутящий момент (Нм).

Мощность большинства двигателей современных автомобилей варьируется от 550 (л.с.) до 7600 (л.с.), а объем — от 24 (см 3 ) до 800 (см 3 ).

Ход поршня по отношению к диаметру цилиндра является основным параметром, определяющим мощность, габариты, массу двигателя и в большинстве случаев составляет от 61.5 (мм) до 197 (мм).

Важно: в большинстве автомобилей количество цилиндров в двигателе внутреннего сгорания колеблется от 2 единиц до 16 единиц.

Предостережение: приведенные выше данные являются официальными цифрами производителя, однако следует учитывать, что информация является справочной и не гарантирует однозначной точности.

  • Двигатели Acura
  • Двигатели Audi
  • Двигатели Scania
  • Двигатели Roman
  • Двигатели Mazda
  • Двигатели Lincoln
  • Двигатели Toyota
  • Двигатели Mercedes-Benz
  • Двигатели Peugeot
  • Двигатели AC
  • Двигатели Alfa Romeo
  • Двигатели Nissan
  • Двигатели Opel
  • Двигатели Neoplan
  • Двигатели Alpina
  • Двигатели Ariel
  • Двигатели Aro
  • Двигатели Asia
  • Двигатели Aston Martin
  • Двигатели Austin
  • Двигатели Autobianchi
  • Двигатели Bedford
  • Двигатели BMW
  • Двигатели Steyr-Daimler-Puch
  • Двигатели MAN
  • Двигатели Leyland
  • Двигатели LIAZ
  • Двигатели Beijing
  • Двигатели Bentley
  • Двигатели Bertone
  • Двигатели Bitter
  • Двигатели BMW Alpina
  • Двигатели Brilliance
  • Двигатели Bristol
  • Двигатели Bufori
  • Двигатели Bugatti
  • Двигатели Buick
  • Двигатели BYD
  • Двигатели Byvin
  • Двигатели Chery
  • Двигатели Chevrolet
  • Двигатели Fiat
  • Двигатели UAZ
  • Двигатели Daewoo
  • Двигатели Citroen
  • Двигатели Hanomag
  • Двигатели Zetor
  • Двигатели Mitsubishi
  • Двигатели Ford
  • Двигатели Datsun
  • Двигатели Dodge
  • Двигатели RAM
  • Двигатели SISU
  • Двигатели DAF
  • Двигатели Caterpillar
  • Двигатели Deutz
  • Двигатели Skoda
  • Двигатели Renault
  • Двигатели Kia
  • Двигатели Volkswagen
  • Двигатели Suzuki
  • Двигатели Geely
  • Двигатели Honda
  • Двигатели Hyundai
  • Двигатели Infiniti
  • Двигатели Hummer
  • Двигатели Smart
  • Двигатели Lexus
  • Двигатели Guangtong
  • Двигатели Jaguar
  • Двигатели Isuzu
  • Двигатели Jeep
  • Двигатели Land Rover
  • Двигатели Chrysler
  • Двигатели Plymouth
  • Двигатели Seat
  • Двигатели Mini
  • Двигатели Lifan
  • Двигатели Volvo BM
  • Двигатели Wanli
  • Двигатели Zotye
  • Двигатели Vauxhall
  • Двигатели Pontiac
  • Двигатели Qoros
  • Двигатели Holden
  • Двигатели VDL Bus
  • Двигатели Porsche
  • Двигатели Rover
  • Двигатели Raba
  • Двигатели Renault Trucks
  • Двигатели Komatsu
  • Двигатели Ssang Yong
  • Двигатели Subaru
  • Двигатели Oldsmobile
  • Двигатели Iveco
  • Двигатели AM General
  • Двигатели Baltijas
  • Двигатели Brabus
  • Двигатели Geo
  • Двигатели Hawtai
  • Двигатели SEAT
  • Двигатели Volvo
  • Двигатели Maserati
  • Двигатели Saviem
  • Двигатели TagAZ
  • Двигатели VAZ
  • Двигатели Lada
  • Двигатели GAZ
  • Двигатели Cadillac
  • Двигатели Callaway
  • Двигатели Carbodies
  • Двигатели Caterham
  • Двигатели Changan
  • Двигатели ChangFeng
  • Двигатели Cizeta
  • Двигатели Coggiola
  • Двигатели Dacia
  • Двигатели TAM
  • Двигатели Dadi
  • Двигатели Daihatsu
  • Двигатели Daimler
  • Двигатели Dallas
  • Двигатели De Tomaso
  • Двигатели DeLorean
  • Двигатели Derways
  • Двигатели DongFeng
  • Двигатели Doninvest
  • Двигатели Donkervoort
  • Двигатели Eagle
  • Двигатели FAW
  • Двигатели Ferrari
  • Двигатели Fisker
  • Двигатели Foton
  • Двигатели FSO
  • Двигатели Fuqi
  • Двигатели GMC
  • Двигатели Gonow
  • Двигатели Great Wall
  • Двигатели Hafei
  • Двигатели Haima
  • Двигатели Hindustan
  • Двигатели HuangHai
  • Двигатели Innocenti
  • Двигатели Invicta
  • Двигатели Iran Khodro
  • Двигатели Isdera
  • Двигатели JAC
  • Двигатели Jensen
  • Двигатели JMC
  • Двигатели Koenigsegg
  • Двигатели KTM
  • Двигатели Lamborghini
  • Двигатели Lancia
  • Двигатели Landwind
  • Двигатели Liebao Motor
  • Двигатели Lotus
  • Двигатели Lti
  • Двигатели Luxgen
  • Двигатели Mahindra
  • Двигатели Marcos
  • Двигатели Marlin
  • Двигатели Maruti
  • Двигатели Maybach
  • Двигатели McLaren
  • Двигатели Mega
  • Двигатели Mercury
  • Двигатели Metrocab
  • Двигатели MG
  • Двигатели Microcars
  • Двигатели Minelli
  • Двигатели Mitsuoka
  • Двигатели Morgan
  • Двигатели Morris
  • Двигатели Noble
  • Двигатели Osca
  • Двигатели Pagani
  • Двигатели Panoz
  • Двигатели Perodua
  • Двигатели Piaggio
  • Двигатели Proton
  • Двигатели PUCH
  • Двигатели Puma
  • Двигатели Qvale
  • Двигатели Renaissance
  • Двигатели Renault Samsung
  • Двигатели Rolls-Royce
  • Двигатели Ronart
  • Двигатели Saab
  • Двигатели Saleen
  • Двигатели Santana
  • Двигатели Saturn
  • Двигатели Scion
  • Двигатели VOLVO
  • Двигатели Massey Ferguson
  • Двигатели ShuangHuan
  • Двигатели Soueast
  • Двигатели Spectre
  • Двигатели Spyker
  • Двигатели Talbot
  • Двигатели Tata
  • Двигатели Tatra
  • Двигатели Tazzari
  • Двигатели Tesla
  • Двигатели Tianma
  • Двигатели Tianye
  • Двигатели Tofas
  • Двигатели Trabant
  • Двигатели Tramontana
  • Двигатели Triumph
  • Двигатели TVR
  • Двигатели Ultima
  • Двигатели Vector
  • Двигатели Venturi
  • Двигатели Vortex
  • Двигатели Wartburg
  • Двигатели Westfield
  • Двигатели Wiesmann
  • Двигатели Xin Kai
  • Двигатели Zastava
  • Двигатели ZX
  • Двигатели Avtokam
  • Двигатели Astro
  • Двигатели Bronto
  • Двигатели ZAZ
  • Двигатели ZIL
  • Двигатели IZH
  • Двигатели KamAZ
  • Двигатели Kanonir
  • Двигатели LUAZ
  • Двигатели Moskvich
  • Двигатели SeAZ
  • Двигатели SMZ
  • Двигатели Oltcit
  • Двигатели Asuna
  • Двигатели Fso
  • Двигатели Yugo
  • Двигатели Force
  • Двигатели Reliant
  • Двигатели Ravon
  • Двигатели Ram
  • Двигатели E-Car
  • Двигатели Ecomotors
  • Двигатели Gordon
  • Двигатели Haval
  • Двигатели Marussia
  • Двигатели Premier
  • Двигатели Yo-mobil
  • Двигатели Hino
  • Двигатели Dongfeng
  • Двигатели DS
  • Двигатели Roewe
  • Двигатели Genesis
  • Двигатели LDV
  • Двигатели Abarth
  • Двигатели PGO
  • Двигатели Rezvani
  • Двигатели Saipa
  • Двигатели Aurus
  • Двигатели BAW
  • Двигатели Bogdan
  • Двигатели Freightliner
  • Двигатели Packard

Комментарии. Есть вопросы? Ответим на все.

Главные величины двигателей авто: характеристики мотора

Двигатель внутреннего сгорания находится почти во всех автомобилях. Он устроен непросто. Поэтому обычному водителю в нем не разобраться сразу. Но когда вы покупаете автомобиль, говорят всегда о двигателе и его параметрах и свойствах. Давайте посмотрим технические характеристики двигателя и постараемся ответить на несколько основных вопросов.

  1. Сколько цилиндров имеет двигатель? Сегодня в машинах можно встретить от двух до шестнадцати цилиндров. Так, если взять два двигателя с одинаковыми объемами и мощностью, они будут разными в других сферах.
  2. Где находятся цилиндры? Расположены они последовательно, а могут и двухрядно.
  3. Каковы объемные характеристики двигателя? Объем двигателя очень важен, потому что он действует на остальные свойства двигателя внутреннего сгорания. Обычно если увеличивать объем двигателя, то увеличивается его мощность, а соответственно и расход топлива становится больше.
  4. Из чего сделан двигатель? Обычно он бывает из чугуна, который дает прочность двигателю, но весит немало.

Еще есть из алюминия. Вес у него небольшой и по прочности у него средние параметры. Еще есть из магния, которые по весу самые маленькие, А прочность очень хорошая, но стоит такой двигатель дорого.

Но это далеко не самые главные характеристики. На самом деле, мало кто из автовладельцев вообще задумывался о том, из какого материала произведён двигатель в их транспортном средстве. Более важными характеристиками являются следующие моменты:

  • мощность двигателя. Она влияет на скорость и время разгона машины. Измеряется в лошадиных силах или ваттах;
  • крутящий момент. В двигателе нагнетается максимальное тяговое усилие. На скорость сильно не влияет, на ускорение на низких оборотах оказывает сильное влияние;
  • обороты в коленчатом валу. Чем больше эти обороты, тем резче динамика.

Расходные характеристики:

  • расход бензина;
  • какой марки топливо потребуется использовать;
  • как расходуется масло;
  • мало какого производителя рекомендует создатель авто.

Это важные основные свойства. Однако есть еще даже более сложные моменты:

  • какой тип топлива в вашей машине. Двигатели бывают дизельные и бензиновые;
  • система, которая впускает бензин. Сегодня в машинах впрыск происходит автоматически. А в старых карбюраторных машинах карбюраторная система впрыска;
  • важен и компрессор. Атмосферные двигатели не имеют компрессора. А те, у которых он есть, называются компрессионные. Также еще есть турбонаддувные модели, являющиеся самыми новыми. Некоторые устанавливают сразу несколько компрессоров. Из-за этого улучшается стабильность в работе;
  • в двигателе количество распределительных валов меняется по одному на каждые восемь клапанов.

Как же распределяется газ? Ответ очевиден: это или статический механизм, или динамический. Если менять высоту подъема клапанов, то удобно будет переключаться с одной скорости на другую.

Типы двигателей

от admin 11.06.2019, 10:26 2.4к Просмотры

Мотор — это сердце любого транспортного средства, да и не только. Благодаря ему осуществляется вся работа механизмов. Любой тип двигателя преобразует энергию, которая высвобождается при сгорании топлива в полезную механическую работу. А знаете ли вы, какие бывают «сердца» у машин? Давайте попробуем разобраться.

Какие типы и виды двигателей существуют

Абсолютно любой моторный агрегат действует по одному и тому же принципу. В него подаётся топливо. Оно сжигается. В процессе сжигания выделяется энергия, а далее эта энергия преобразуется в механическую. Вся эта процедура повторяется неоднократно. Этот повторяющийся процесс называется тактом. В зависимости от того, сколько ходов совершает поршень, все двигательные установки можно разделить на двухтактные и четырёхтактные. Все силовые агрегаты, которыми оснащаются автомобили, основаны на четырёхтактном цикле. За время цикла подаётся топливная смесь, происходит рабочий ход поршня (вверх и вниз) и выводятся газы.

Двухтактные двигатели работают немного иначе. За время такта совершается рабочий ход и сжимается топливная смесь. Поршень наполняется и очищается за отведённое ему время. Эти двигатели имеют существенный минус — они выбрасывают много отработанных газов. А ещё они слишком много потребляют горючего. Именно поэтому они не используются в автотранспорте.

Инжекторный двигатель

Работа этого агрегата устроена несколько иначе: горючее маленькой порцией впрыскивается в воздушную среду. Давление распыляет топливо через форсунку, тем самым значительно сокращается его количество, так как оно дозируется специальным прибором. Это делает такие моторы более экономичными, а дозированная порция топливной смеси уменьшает количество вредных веществ в выхлопных газах и повышает коэффициент полезного действия двигателя.

Этот тип двигателя включается в себя механический и электронный виды. Механический дозирует горючее посредством рычагов, а электронный использует особую систему, управляющую количеством топливной смеси. Подобные системы позволяют горючему более полно сгорать, благодаря чему уменьшается количество вредного вещества, попадающего в атмосферу.

Вам будет интересно  Где находится номер двигателя

Карбюраторный двигатель

Проходя топливную систему, бензин поступает в карбюратор, иными словами, впускной коллектор. Туда же нагнетается воздух, который смешавшись с горючим, образует рабочую смесь. Она поступает в цилиндры, искра от свечи поджигает её.

Машины, укомплектованные карбюраторными моторами, уже вышли из моды и относятся к морально устаревшим. В настоящее время повсеместно применяются инжекторные. В них топливо поступает через форсунку.

Дизельный двигатель

Двигатели дизельного типа требуют особого внимания. Топливная смесь в них при сжимании воспламеняется. Воздух всасывается под большим давлением и за счёт этого происходит процесс самовоспламенения. Рабочий ход начинается сразу после воспламенения, далее выхлопные газы вытесняются.

У этого типа небольшой расход горючего и он выделяет мало вредных веществ. Достаточно высокий КПД. Этот вид силового устройства непрерывно модернизируется, даже морозы ему не страшны.

Разнообразные моторы, которые работают на дизтопливе, различны своими параметрами. Эти характеристики отличаются в зависимости от времени года. Им не нужна система зажигания, так как горючее воспламеняется за счёт давления.

Классификация двигателей по различным основаниям

Различные критерии, дают возможность сгруппировать типы моторов.

Классификация двигателей внутреннего сгорания – всё по полочкам

Двигатели внутреннего сгорания классифицируют по ряду признаков:

  • по способу осуществления рабочего цикла: двух- и четырехтактные, с наддувом и без него
  • по способу воспламенения топлива: с принудительным зажиганием (искровым или факельным) топливовоздушной смеси, образованной в карбюраторе (карбюраторные двигатели), с воспламенением от сжатия (дизели)
  • по способу смесеобразования: внешним и внутренним смесеобразованием
  • по способу охлаждения: с жидкостным и воздушным охлаждением
  • по расположению цилиндров: однорядные с вертикальным, горизонтальным и наклонным расположением цилиндров, двухрядные (V-образные с различным углом развала цилиндровых блоков), многорядные (с числом цилиндровых блоков три и более)
  • по назначению: стационарные, транспортные (судовые тепловозные, тракторные, автомобильные, авиационные)

На автомобильном транспорте широко применяются карбюраторные двигатели и дизели, работающие по четырехтактному циклу. Реже используются двухтактные двигатели. Наибольшее число моделей имеют однорядное расположение цилиндров с числом цилиндров два — шесть. На большинстве грузовых автомобилей и автобусов установлены V-образные двигатели.

Условия эксплуатации транспортных двигателей характеризуются частой сменой нагрузочных и скоростных режимов работы, значительным диапазоном изменения температуры и давления атмосферного воздуха, его загрязнением.

Технико-экономическими требованиями предусматривается значительное повышение эффективности ДВС с одновременным снижением их металлоемкости и улучшением технологичности конструкции.

Классификация двигателей

Классификация двигателей будет понятна, если мы её рассмотрим на основе их признаков: по их назначению, конструктивным особенностям, физическим процессам и другим характерным особенностям.

По топливу

  • бензин, дизель, керосин;
  • газ

Тактовый рабочий цикл.

  • Двухтактные ДВС;
  • Четырехтактные ДВС

По типу смесеобразования

  • внешнее смесеобразование (карбюраторные или газовые двигатели). Нужно обратить внимание на то, что карбюраторные двигатели потребляют легкое жидкое топлив (бензин) и в камеру сгорания поступает уже готовая смесь паров топлива с воздухом;
  • внутреннее смесеобразование (бензиновые и дизельные с непосредственным впрыском топлива) дизели работают на жидком тяжелом топливе (дизельное). Оно поступает через форсунки в камеру сгорания в тот момент, когда воздух максимально сжат поршнем, находится в верхней мертвой точке (ВМТ), и соответственно перегрет до высокой температуры, достаточной для поджига смеси;

По способу воспламенения смеси.

  • с непосредственным поджиганием смеси в цилиндре в нужный момент, будь то карбюраторные или двигатели с впрыском бензина.;
  • с воспламенением от сжатия в цилиндре (дизель).

По конструкции расположения и числа цилиндров.

Классификация по конструкции ДВС

  • однорядные, двухрядные (V-образные, оппозитные);
  • n — цилиндровые. Количество цилиндров в двигателе автомобилей может быть любым, но самые распространенные в автомобилестроении — четырехцилиндровые двигатели.

По системам охлаждения двигателя

  • воздушное (с естественным атмосферным обдувом и принудительным);
  • жидкостное (специальная система двигателя, имеющая по всему двигателю каналы, по которым принудительно перекачивается охлаждающая жидкость, охлаждая её с помощью радиатора). На блоге подробно описана работа охлаждающей системы.

Это и есть краткое пояснение по теме классификация ДВС. По каждому пункту на блоге мы будем рассматривать все особенности работы двигателей.

Читайте, совершенствуйтесь, делитесь полученными знаниями в сетях.

Удачи на дорогах!

Тип конструкции ДВС W-образный двигатель U-образный двигатель Принцип подачи воздуха в ВДС

Поршень двигателя состоит из трех основных частей:

  1. Днищепоршня (воспринимает газовые силы и тепловую нагрузку);
  2. Уплотняющая часть поршня (поршневые кольца, которые препятствуют прорыву газов в картер и передают большую часть тепла от поршня цилиндру двигателя);
  3. Направляющая частьпоршня (юбка) — поддерживает положение поршня и передаёт боковую силу на стенку цилиндра.

В обиходе автомобилистов часто встречается такое название, как головка поршня. Головкой поршня называют днище поршня с его уплотняющей частью.

Днище поршня

Основная рабочая поверхность детали, которая вместе со стенками гильзы цилиндров и головкой блока формирует камеру сгорания, в которой и происходит сгорание горючей смеси. Днище поршня может иметь различную конструкцию в зависимости от типа и особенностей двигателя.

Виды поршней

В двухтактных двигателях применяются поршни со сферической формой днища, что приводит к повышению эффективности наполнения камеры сгорания горючей смесью и улучшает отвод отработанных газов.

В четырехтактных бензиновых двигателях днище имеет плоскую или вогнутую форму. Углубления – выемки служат для улучшения смесеобразования и уменьшают вероятность столкновения поршня с клапаном.

В дизельных моторах углубления в днище более габаритные и имеют различные формы. Такие выемки называют поршневой камерой сгорания. В процессе работы в поршневых камерах сгорания создаются завихрения, которые способствуют улучшению качества смешивания топлива с воздухом.

Уплотняющая часть поршня

Уплотняющая часть поршня предназначена для установки компрессионных и маслосъемных колец, которые предназначены для устранения зазора между поршнем и стенкой гильзы цилиндров.

Уплотняющая часть представляет собой проточки (канавки) в цилиндрической поверхности поршня. В двухтактных двигателях в проточки вставляются специальные вставки, в которые упираются замки колец, благодаря которым кольца не прокручиваются.

Число канавок, на уплотняющей части поршня, соответствует количеству поршневых колец. Чаще всего применяется конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным. В канавке под маслосъемное кольцо имеются специальные отверстия для стека масла, которое снимается маслосъемным кольцом со стенки гильзы цилиндра.

Юбка поршня

Юбка является направляющей поршня, обеспечивает только возвратно-поступательное движение детали.

8 клапанные двигатели чаще всего устанавливаются на бюджетных, недорогих моделях автомобилей. В каждом цилиндр имеется по одному отверстию для впуска топливовоздушной смеси, и по одному – для выпуска отработанных газов. Кроме того 8 клапанные двигатели имеют лишь один распределительный вал, приводится который от ременной или цепной передачи. Преимущество 8 клапанного двигателя в простоте конструкции, а следовательно ремонт 8 клапанного двигателя обойдется недорого.

Производители 8 клапанных двигателей всегда стараются сэкономить на производстве, например благодаря использованию схемы с ручной регулировкой тепловых зазоров, и такие двигатели, как вы поняли, не оборудуются гидрокомпенсаторами. Это в коей-то мере можно назвать преимуществом, ведь такие двигатели не так восприимчивы к некачественному топливу. В 8 клапанном моторе, по сравнению с 16 клапанным не надо бояться обрыва ремня ГРМ, так как наличие специальных выемок в поршнях предотвращают серьезные повреждение силового агрегата, как это произошло бы в 16 клапанном двигателе. Но за счет того, что в 16 клапанном двигателе клапанов по 4 на каждый и два распредвала, он более экономичный, в плане расхода топлива, хоть и отличается более сложной конструкцией.

В 16 клапанном двигателе процессы сгорания проходят намного эффективней, что позволяет увеличить мощность до 15-20%, в сравнении с 8-клапанными моторами. Хочется отметить, что в автомобилях с 16 клапанном двигателем улучшается комфорт передвижения, снижается интенсивность шума и вибраций. Запасом хода 8-ми клапанные и 16-клапанные двигатели практически не отличаются.

Проще говоря, чем больше количество движущихся элементов, тем больше вероятность поломки. Если автомобиль вам нужен для спокойной, умеренной езды по городу, тогда 8-клапанный двигатель, то что вам нужно.

Двигатель с 16-ю клапанами более приемистый, на нем можно разогнаться, но на это придется немного потратиться. Возможность тюнинга двигателя в 16 клапанном двигателе более предпочтительна, так как у 16-клапанных двигателей впускной и выпускной тракты разнесены по разные стороны головки, что значительно облегчает монтаж впускных и выпускных коллекторов. Кроме того, сама головка блока цилиндров имеет больший потенциал для совершенствования. 8-клапанные двигатели тоже можно тюнинговать, но тюнинг 8 ми клапанного потребует больше сил и времени.

Типы ДВС и их классификация

Сколько марок автомобилей колесит по дорогам нашей матушки Земли? Уже трудно посчитать. А сколько двигателей понаизобретали? Это уже за пределами современной статистики. Поэтому нужна классификация двигателей внутреннего сгорания, чтобы хотя бы иметь представление о различии их конструкций и принципиальных особенностей.

Так уж случилось, что в современном автомобилестроении победу одержали энергетические установки, содержащие в себе принцип внутреннего сгорания, преобразующие тепловую энергию сгоревшего топлива в цилиндре, в механическую работу. Вот мы и рассмотрим эти самые ДВС и разберемся с их классификацией.

Устройства на жидком топливе

В классификации двигателей с жидким веществом в качестве топлива, их относят к группе ракетных устройств. Важно отметить, что в качестве рабочей жидкости можно использовать самое разное топливо. Тут необходимо понимать, что выбор смеси для запуска агрегата будет зависеть от характеристик, предназначения, мощности, а также от продолжительности работы самого двигателя.

Среди всех требований, которые чаще всего предъявляются именно к этому классу устройств — это наименьший расход рабочей смеси или же, что то же самое, максимальная удельная тяга. Когда возникает необходимость в выборе смеси для работы двигателя на жидком топливе, обращают внимание на такие параметры, как: скорость воспламенения и горения, плотность, испаряемость, ядовитость, вязкость и еще несколько важных характеристик.

Какие типы и виды двигателей существуют

Типы двигателей

Абсолютно любой моторный агрегат действует по одному и тому же принципу. В него подаётся топливо. Оно сжигается. В процессе сжигания выделяется энергия, а далее эта энергия преобразуется в механическую. Вся эта процедура повторяется неоднократно. Этот повторяющийся процесс называется тактом. В зависимости от того, сколько ходов совершает поршень, все двигательные установки можно разделить на двухтактные и четырёхтактные. Все силовые агрегаты, которыми оснащаются автомобили, основаны на четырёхтактном цикле. За время цикла подаётся топливная смесь, происходит рабочий ход поршня (вверх и вниз) и выводятся газы.

Двухтактные двигатели работают немного иначе. За время такта совершается рабочий ход и сжимается топливная смесь. Поршень наполняется и очищается за отведённое ему время. Эти двигатели имеют существенный минус — они выбрасывают много отработанных газов. А ещё они слишком много потребляют горючего. Именно поэтому они не используются в автотранспорте.

Инжекторный двигатель

Типы двигателей

Работа этого агрегата устроена несколько иначе: горючее маленькой порцией впрыскивается в воздушную среду. Давление распыляет топливо через форсунку, тем самым значительно сокращается его количество, так как оно дозируется специальным прибором. Это делает такие моторы более экономичными, а дозированная порция топливной смеси уменьшает количество вредных веществ в выхлопных газах и повышает коэффициент полезного действия двигателя.

Этот тип двигателя включается в себя механический и электронный виды. Механический дозирует горючее посредством рычагов, а электронный использует особую систему, управляющую количеством топливной смеси. Подобные системы позволяют горючему более полно сгорать, благодаря чему уменьшается количество вредного вещества, попадающего в атмосферу.

Карбюраторный двигатель

Типы двигателей

Проходя топливную систему, бензин поступает в карбюратор, иными словами, впускной коллектор. Туда же нагнетается воздух, который смешавшись с горючим, образует рабочую смесь. Она поступает в цилиндры, искра от свечи поджигает её.

Машины, укомплектованные карбюраторными моторами, уже вышли из моды и относятся к морально устаревшим. В настоящее время повсеместно применяются инжекторные. В них топливо поступает через форсунку.

Дизельный двигатель

Типы двигателей

Двигатели дизельного типа требуют особого внимания. Топливная смесь в них при сжимании воспламеняется. Воздух всасывается под большим давлением и за счёт этого происходит процесс самовоспламенения. Рабочий ход начинается сразу после воспламенения, далее выхлопные газы вытесняются.

У этого типа небольшой расход горючего и он выделяет мало вредных веществ. Достаточно высокий КПД. Этот вид силового устройства непрерывно модернизируется, даже морозы ему не страшны.

Разнообразные моторы, которые работают на дизтопливе, различны своими параметрами. Эти характеристики отличаются в зависимости от времени года. Им не нужна система зажигания, так как горючее воспламеняется за счёт давления.

Вам будет интересно  Неисправности дизельного двигателя

Группа реактивных устройств

Вторая категория устройств, то есть реактивная, включает в себя такие агрегаты, как: турбореактивные воздушные двигатели, прямоточные воздушно-реактивные двигатели. Основное различие этих двух типов устройств заключается в том, что у прямоточных реактивных устройств, сжатие воздуха происходит за счет подвода механической энергии в тракт двигателя. Для работы этого агрегата необходимо создать повышенное статическое давление. Этого эффекта добиваются путем торможения, движущегося во входном устройстве воздухозаборника, воздуха.

Классификация автомобильных двигателей

К двигателям, устанавливаемым на автомобилях, предъявляются определенные требования, которые зависят и от условий полной автономности этих транспортных средств, и от их конкретного назначения (типа автомобиля) . В любом случае, двигатель автомобиля должен иметь минимальные габариты и массу при достаточной развиваемой мощности и высокой экономичности, а также не представлять угрозу безопасности людей и окружающей природы.

Как уже упоминалось в предыдущей статье, на автомобилях наибольшее распространение получили тепловые двигатели, преобразующие энергию тепла от сгорания топлива в механическую энергию движения. Применение двигателей других типов, способных использовать для работы прочие виды энергии, ограничено рядом причин, среди которых наиболее веская – технологическая.

Тепловая энергия является доступной, ее можно легко извлечь из любого калорийного топлива, но самое главное – тепловую энергию в виде топлива можно в достаточном количестве запасти в дорогу. Ведь автомобиль – это автономное средство передвижения, и если его, например, «привязать» проводами к емкому источнику электроэнергии, то он лишится автономности. Сложно запастись в дорогу и другими видами энергии, например, энергией сжатого газа, потока жидкости, солнечного света и т. п. Применение в автомобильных двигателях ядерной энергии на современном уровне развития науки и технологий обойдется слишком дорого, а в условиях массовой эксплуатации — небезопасно. Поэтому основное препятствие на пути использования других видов энергии вместо тепловой в автомобильных двигателях – отсутствие емких аккумуляторов энергии, способных поддерживать работу двигателя длительное время.

Все тепловые двигатели по способу подвода тепла к рабочему телу делят на два типа:

  • тепловые двигатели внутреннего сгорания (ДВС) ;
  • тепловые двигатели с внешним подводом теплоты.

На современных автомобилях в подавляющем большинстве применяется первый тип двигателей, который отличается тем, что тепло к газообразному рабочему телу подводится непосредственно в самом двигателе путем сжигания смеси топлива с кислородом воздуха. К двигателям второго типа, использующим для работы рабочее тело, нагретое вне двигателя, относятся, например, паровые машины, которые в настоящее время почти не используются по ряду причин:

  • высокая удельная металлоемкость на единицу полученной механической энергии;
  • низкий КПД;
  • относительно долгая подготовка к работе и т. д.

Рядом технологических причин ограничивается использование в качестве автомобильных двигателей газовых турбин, которые подразделяются на турбины внешнего сгорания и турбины внутреннего сгорания. Двигатель Стирлинга, который по принципу действия относится к двигателям внешнего сгорания, тоже не получил признания в массовом автомобильном производстве.

По конструкции тепловые двигатели классифицируют на следующие типы:

  • поршневые;
  • роторно-поршневые;
  • газотурбинные;
  • реактивные.

Наибольшее распространение на автомобилях получили поршневые двигатели внутреннего сгорания, которые в свою очередь классифицируются по следующим признакам:

По способу воспламенения рабочего тела :

  • с искровым (принудительным) воспламенением;
  • с воспламенением от сжатия (самовоспламенением) .

К первому типу относятся двигатели, использующие специальную систему воспламенения рабочего тела (систему зажигания) . К таковым относятся, например, карбюраторные, инжекторные и газовые двигатели. Ко второму типу относятся дизельные двигатели, в которых топливо самовоспламеняется из-за сильного нагрева при высокой степени сжатия.

По виду используемого топлива :

  • работающие на жидком топливе (бензин, дизтопливо, керосин) ;
  • работающие на газообразном топливе.

По способу смесеобразования :

  • с внешним смесеобразованием;
  • с внутренним смесеобразованием.

К двигателям с внешним смесеобразованием (т. е. смешиванием топлива с кислородом воздуха вне цилиндра) относятся карбюраторные двигатели и двигатели с центральным и распределенным впрыском бензина, а к двигателям с внутренним смесеобразованием – дизельные и инжекторные двигатели непосредственного впрыска, в которых топливо и воздух поступают в цилиндр раздельно, и в дальнейшем смешиваются, образуя рабочую смесь.

По регулированию мощности :

  • количественное регулирование;
  • качественное регулирование.

При количественном регулировании мощность двигателя изменяется вследствие изменения общего количества топливовоздушной смеси, подаваемой в цилиндр. При качественном регулировании мощность изменяется количеством впрыскиваемого в цилиндр топлива при неизменном количестве подаваемого воздуха.

По характеру и последовательности термодинамических процессов в цилиндрах двигателя:

Термодинамические процессы, имеющие место в тепловых двигателях, а также пути повышения их эффективности (КПД) рассмотрены в статьях раздела «Основы гидравлики и теплотехники». Там же можно найти информацию об истории изобретения тепловых двигателей, применяемых на автомобилях.

Эффективный КПД и удельный эффективный расход топлива

Экономичность работы двигателя в целом определяют эффективным КПД

ni и удельным эффективным расходом топлива ge. Эффективный КПД

оценивает степень использования теплоты топлива с учетом всех видов потерь как тепловых так и механических и представляет собой отношение теплоты Qe, эквивалентной полезной эффективной работе, ко всей затраченной теплоте Gт*Q, т.е. nm=Qe/(Gт*(Q^p)н)=Ne/(Gт*(Q^p)н) (2).

Так как механический КПД равен отношению Ne к Ni, то, подставляя в

уравнение, определяющее механический КПД nm, значения Ne и Ni из

уравнений (1) и (2), получим nm=Ne/Ni=ne/ni, откуда ne=ni/nM, т.е. эффективный КПД двигателя равен произведению индикаторного КПД на механический.

Удельный эффективный расход топлива [кг/(кВт*ч)] представляет собой отношение секундного расхода топлива Gт к эффективной мощности Ne, т.е. ge=(Gт/Ne)*3600, или [г/(кВт*ч)] ge=(Gт/Ne)*3.6*10^6.

Тип двигателя карбюраторный

Тип двигателя карбюраторный

Бензин, который проходит через топливную систему, попадает в карбюратор или впускной коллектор. В него же поступает воздух, который в дальнейшем смешивается с топливом и получается готовая смесь. Она подается в цилиндры и там поджигается искрой, которую дают свечи зажигания.

Автомобили с карбюраторным типом двигателем на данный момент считаются устаревшими. Сейчас широко используются двигатели инжекторного типа. Распыление топлива производится форсунками или через впускной коллектор.

Гибрид

Наука не стоит на месте, и в последние годы на рынке появилось большое количество автомобилей, оборудованных такой разновидностью ДВС, как гибрид. Новейшая технология отличается меньшей шумностью, потрясающей экономичностью, большой тяговитостью и долговечностью.

В основе гибридного мотора лежит обыкновенный бензиновый ДВС, поэтому в классификации нередко такие моторы ошибочно называют бензиновыми. Как правило, он оборудован топлива, а потому вместо устаревших карбюратора и инжектора здесь выступают высокотехнологичные форсунки с электронным управлением.

Второй, отличительной, частью гибридного мотора является наличие , подпитывающегося от основного ДВС. Так, бензиновый агрегат не только передает часть мощности колесам, но и посредством генератора заряжает мощный аккумулятор электродвигателя. Таким образом, на малых скоростях машина не потребляет топливо и двигается только за счет электрической части, а при повышении скорости обе части начинают работать совместно.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает, благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Основные конструктивные отличия ДВС

Если говорить о главных отличиях в конструкции поршневых двигателей, различные силовые агрегаты делятся на рядные горизонтальные и вертикальны по расположению цилиндров. Также двигатели бывают V-образными, оппозитными и т.д.

Еще агрегаты бывают однопоршневыми двигателями, когда в одном цилиндре имеется один поршень и рабочая полость. При этом также встречаются ДВС, в которых поршни движутся противоположно в одном цилиндре, а рабочая полость находится между двумя поршнями. Также бывают моторы двойного действия, в которых по обеим сторонам от поршня имеются рабочие полости.

Отдельно стоит упомянуть и роторно-поршневые двигатели (двигатель Ванкеля), которые также имеют разную конструкцию. Наиболее распространенным вариантом является такой, где ротор, который и является поршнем, движется (планетарное движение) в корпусе. Во время такого движения между ротором и стенками корпуса двигателя образуются камеры сгорания с переменным рабочим объемом.

Рекомендуем также прочитать отдельную статью о том, какие бывают виды и типы двигателей внутреннего сгорания. Из этой статьи вы узнаете о различных разновидностях существующих ДВС, а также их отличительных особенностях.

При этом существуют варианты роторного двигателя, где поршень-ротор не движется, а планетарное движение совершает корпус ДВС. Еще одной разновидностью можно считать агрегаты, в которых движется как корпус, так и сам ротор.

Классы энергоэффективности электродвигателей

Понятие энергоэффективность означает оптимальное использование энергии, благодаря которому достигается снижение ее потребления при идентичной мощности нагрузки. Еще со школы мы знаем, что двигатель при работе теряет долю энергии в виде тепла. Главным знаком энергоэффективности электродвигателей является КПД. КПД – это отношение полезно использованной к суммарной энергии, полученной системой. Основные потери можно условно разделяют на:

  • • механические потери (возникают от трения, возникшего в динамических частей двигателя);
  • • магнитные потери (например, из-за токов Фуко);
  • • электрические потери (потери в стали при протекании тока).

Классы энергоэффективности IEC

Для того чтобы классифицировать эл.двигатели была разработана особая классификация, утвержденная организацией IEC. Так действующим евростандартом IEC60034-30-1 выделяют вот такие классы энергоэффективности электродвигателей:

  • • IE1 – это стандартный тип;
  • • IE2 – высокая группа эффективности;
  • • IE3 – сверхвысокий класс;
  • • IE4 – премиум класс

Благодаря наличию данного разграничения определяют нижние уровни эффективности электрических систем. Так же система рангов по понятным причинам подстегивает здравую конкуренцию, не давая уйти рынку в стагнацию. На графике, представленном выше, наглядно можно увидеть вышеупомянутое разделение на категории. Чем большее КПД выдает эл двигатель при данной нагрузке – тем выше будет ранг энергоэффективности электродвигателя. Сравним данные классы энергоэффективности на примере асинхронных электродвигателей: сопоставим их цены, актуальность установки под те или иные задачи. Для начала стоит сразу расставить все точки над i. Стоит четко понимать: чем выше КПД электромотора, тем дольше он прослужит. Почему? Все очень просто. Чем выше коэффициент полезного действия, тем меньше тепловых потерь, значит, эл.двигатель меньше греется и, следовательно, дольше живет. От сюда следует:

  • • выбирая асинхронный электромотор более высокого разряда, вы экономите на энергии;
  • • вы уменьшаете так называемую «цену жизненного цикла» — двигатель придется реже менять.
Вам будет интересно  Краш-тесты по-американски: популярные в России авто крайне небезопасны

Электродвигатели IE1 чаще всего применяются там, где наиважнейшим критерием служит дешевизна, простота конструкции (как следствие – простота ремонта) и доступность готового оборудования.

Электродвигатели IE2 применяют, когда необходима более тонкая настройка оборудования для работы его в оптимальном режиме. Данный класс электродвигателей более эффективен, по сравнению с предыдущим даже при частичной нагрузке. Так же, безусловно, стоит отметить, что в них используются менее мощные и как следствие менее шумные вентиляторы (охлаждающие мотор). На представленной ниже диаграмме наглядно видны преимущества данного класса по сравнению с IE1

Электродвигатели IE3 получили признание не так давно, а именно в 2021 году. Именно тогда вступил в силу Регламент ЕС указывающий, что двигатели мощностью от 0,75 до 375кВт должны соответствовать типу IE3 или же типу IE2 с применением преобразователя частоты. Они способны работать даже при длительных перегрузках в диапазоне 10-15%. Следовательно, применяют данные моторы, например, на станках, где трудно заметить перегрузку, ведь мощность на валу рабочей машины постоянно изменяется.

Электродвигатели IE4 – это двигатели премиум сегмента. В них используются уникальные системы аэродинамики, теплообмена, конструкции и так далее. Внимание заслуживает повышенное содержание активных материалов и максимальное уменьшение воздушного зазора, благодаря сверхточной соосности всех центров агрегата. Априори, внедрение двигателей класса IE4 незамедлительно снизит энергозатраты производства.

Эффект от внедрения более энергоэффективных двигателей:

  • экономия потребления электроэнергии;
  • снижение мощности, необходимой для работы оборудования с электроприводом (как следствие, опять-таки, экономия);
  • снижение затрат на обслуживание оборудования (чем выше энергоэффективность мотора, тем больше его срок наработки на отказ).

Так, например, использование двигателя мощностью 55 кВт повышенного класса энергоэффективности позволяет сэкономить около 8000 кВт в год от одного двигателя.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  • Блок цилиндров
    . Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  • Кривошипно-шатунный механизм (КШМ)
    – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).

Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые0 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания
    . В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки
    . Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения
    . Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Основы устройства поршневых двс

Поршневые ДВС состоят из механизмов и систем, выполняющих заданные им функции и взаимодействующих между собой. Основными частями такого двигателя являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система.

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала .

Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания.

Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания.

Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания.

Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя .

Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном . Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр ,поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм. Сверху цилиндр накрыт головкой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня.

Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение — нижняя мертвая точка (НМТ) .

Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S=2R.

Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh. Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа: Vа=Vс+Vh. Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах): Vh=пД^3*S/4, где Д — диаметр цилиндра. Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле: Vр=(пД^2*S)/4*i, где i — число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность .

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  • Поршень в цилиндре движется вниз.
  • Открывается впускной клапан.
  • В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  • Поршень поднимается.
  • Выпускной клапан закрывается.
  • Поршень сжимает воздух.
  • Поршень доходит до верхней мертвой точки.
  • Срабатывает свеча зажигания.
  • Открывается выпускной клапан.
  • Поршень начинает двигаться вверх.
  • Выхлопные газы выдавливаются в выпускной коллектор.

Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  • Такт выпуска.
  • Такт сжатия воздуха.
  • Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  • Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы

– распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры.

Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Рекомендуем: График овердрайв. Овердрайв на акпп — что это и как пользоваться

Преимущества ДВС

  • Удобство
    . Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  • Высокая скорость заправки двигателя топливом
    .
  • Длительный ресурс работы
    . Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе

4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.

Компактность

. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Источник https://arhexport.ru/dvigatel/harakteristiki-dvigatelej-legkovyh-avto.html

Источник https://avto-layn.ru/avto-info/klassifikaciya-dvigatelya.html

Источник

Источник

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: