full screen background image

Электроника для авто своими руками

104

Электроника для авто своими руками

Каждый владелец легкового автомобиля по мере своих возможностей старается улучшить свой автомобиль. Причем, чем машина старше, тем желание сделать из нее суперкар, оснащенный самыми последними достижениями науки и техники, сильнее.

Все хорошо, но в меру. Это понимаешь, когда видишь копейку не первой свежести, обвешанную мигалками, отбойниками и навороченными охранными системами. Мы не станем предлагать оснащать Таврию бортовым компьютером или лепить автоматическую систему контроля устойчивости на девятку.

Самодельная электроника в авто

Мы представим, что можно сделать полезного для своего автомобиля, если мы хоть немного разбираемся в электронике и умеем держать паяльник. Полезная электроника для авто своими руками установленная и на себе испытанная может пригодиться не только нам, поэтому предлагаем небольшой дайджест простых устройств, которые упрощают жизнь автомобилиста.

Полезная электроника

Долой катализатор

При удалении катализатора своими руками можно столкнуться с некоторыми трудностями. На некоторых моделях автомобилей нет возможности удалить первичный катализатор, или же вы не хотите делать перепрошивку ЭБУ. В таком случае, есть простое устройство, которое введет в заблуждение хитрый ЭБУ так, что при удаленном катализаторе контрольная лампа сбоя в системе управления двигателем гореть не будет.

Катализатор

Это простейшее устройство подогнано под номинальные показатели катализаторов на всех Мицубиси, Шевроле Лацетти, Ниссан Премьера. Для других автомобилей нужно просто подобрать нужный номинал радиодеталей по осциллограмме. В этом нет ничего сложного – есть куча справочников.
Вот принципиальная схема устройства и его внешний вид.

  • резистор на 150 кОм;
  • конденсатор на 1 мкФ.

После пропайки всей конструкции, обрабатываем ее изолирующим лаком и заключаем в термокембрик. Больше контрольная лампа о себе напоминать не будет.

Проверка свечи зажигания

Очень полезное и простое устройство. Для его изготовления нам понадобится только старая пьезо-зажигалка. При пробитой на корпус свече искра на контактах появляется периодически, а проявляется это в нестабильной работе мотора. Для проверки свечи зажигания есть специальные приборы, но их нет в арсенале, то всегда найдется замена.

Проверка свечи зажигания

Достаем из зажигалки пьезоэлемент, удлиняем провода и изолируем, чтобы не щекотало током. Установим прибор на свечу так, как показано на рисунке, нажмем на кнопку и внимательно посмотрим на контакты. Если искра проскочила – значит, свеча 100% рабочая.

Простейшее зарядное устройство

Наверняка каждый автомобилист с опытом сталкивался с ситуацией, когда нужно подзарядить АКБ, а зарядного устройства под руками не оказалось. Такое зарядное устройство, схему которого мы предлагаем, можно вполне возить с собой в багажнике. Оно может пригодиться в далеких поездках, там, где нет доступа к полноценному зарядному устройству. Главное – чтобы была розетка.

Схема его чрезвычайно проста. Она выполнена на бестрансформаторной основе, поэтому прибор получился компактный и легкий. Устройство не греется и может работать как угодно долго. Есть у него один недостаток – он не имеет гальванической развязки. То есть ток от сети поступает напрямую на аккумулятор через конденсаторный блок.

Для преобразования переменного тока в постоянный служит выпрямитель – диодный мост. Его вполне возможно отыскать готовым, а можно и собрать самому. Мост должен быть рассчитан на напряжение не менее 400 В при силе тока не менее 3 А. Конденсаторный блок в сумме должен показывать суммарную емкость 8 мкФ.

Для того, чтобы схема разряжалась после выключения, на выходе установлен резистор 220-810 кОм. Вместо набора конденсаторов можно использовать один, но емкий – 10 мкФ. На выходные провода можно поставить аккумуляторные зажимы для удобства использования. Схема очень компактна и поместится в любой корпус. Это не идеальное зарядное устройство, но как спасительная крайность может пригодиться не раз.

Схема очень компактна

Для умелого паяльника всегда найдется работа в создании приятных мелочей для комфорта, для безопасности, для создания дополнительного освещения. Главное – знать, что это необходимость. И тогда любой прибор или устройство будет полезным и приятным дополнением к конструкции автомобиля.

«На 100 процентах мощности колеса буксуют». Как своими руками сделать практичный электромобиль

Subaru Libero сам по себе интересный автомобильчик: 7-местный салон, высокий дорожный просвет и полный привод, панорамная крыша, оппозитный двигатель под полом багажника… Но минчанин Алексей пошел дальше, установив вместо «оппозитника» электрическую силовую установку.

Партнер материала — WestMotors. Этот Subaru Libero мы увидели на выставке электромобилей, которую организовала компания. Если нет времени и возможности сконструировать электромобиль своими руками, множество вариантов можно заказать из США с помощью WestMotors usa-avto.by.

«Стоимость проекта получилась около 4500 долларов»

«Идея зарождалась давно, — начинает рассказ создатель этого электро-Subaru. — Лазал по форумам, вникал, что к чему. Решил сделать собственный электромобиль. Стало интересно, как он едет, как эксплуатируется. Покупать готовый получалось дорого и не так интересно, поэтому решил делать свой. На «субариках» я давно езжу, у меня были все модели. В итоге решился убрать оппозитный двигатель и полный привод и сделать Libero переднеприводным электромобилем.

Сам Subaru Libero был куплен за 600 долларов, причем с пробегом что-то около миллиона километров. Повезло с электромотором 6,3 киловатта от погрузчика Balkancar, который удалось найти новым всего за 250 долларов. Самодельный контроллер из Украины обошелся в 500 долларов, а батарея на 24 киловатта от электрокара Nissan Leaf из Хабаровска — в 2500. Общая стоимость проекта получилась около 4500 долларов».

Алексей живет не в частном доме, а в обычной квартире. Работает, как ни странно, электриком. Во дворе никакой «зарядки» у него нет. Как же он заряжается?

«Заряжаюсь в основном в гараже, когда там ковыряюсь. Медленно, но для езды хватает. Есть зарядные станции «Белоруснефти», они пока бесплатные. Ими можно за три часа полностью зарядить мой электромобиль. Летом на полном заряде можно проехать 150 километров, зимой — 100. Почему выбрал Libero? Потому что это очень практичный автомобиль. При небольших внешних размерах он очень просторный и удобный внутри».

Subaru Libero выпускался в 1986-1998 годах. Вмещает машина, однако, аж семь человек вместе с водителем. Здесь три ряда сидений, прозрачная крыша с огромным люком или даже несколькими люками, широчайшие возможности трансформации салона.

Подключаемый из салона полный привод (постоянно ведущая задняя ось), полноценная рама, две боковые сдвижные двери, поворотные передние кресла. Средний ряд раскладывается и образует столик. То есть вчетвером можно очень комфортно остановиться на пикник. Есть возможность раскладывания среднего и заднего рядов в ровную двуспальную кровать.

В общем, в идеале можно заехать куда-нибудь в дебри, разложить салон в ровное спальное место, лежать и смотреть на звезды. Есть такое исполнение люка, есть с двумя люками и прозрачными стеклами, где передний люк поднимается, а задний сдвигается.

Единственный нюанс — не самый мощный и надежный 1,2-литровый моторчик. Но теперь стоит надежный и тяговитый электромотор, причем он работает на 60% своей мощности. На 100% он просто беспомощно буксует. Пока что скорость авто ограничена на 70 км/ч. На месте бензинового мотора теперь располагается батарея.

А как на ходу?

Проехали и мы на этом чуде технике. Не сказать, что ураган, но одну светофорную гонку мы выиграли. Правда, остальные участники вряд ли были в курсе, что это была гонка.

Мотор выдает максимальную тягу с 0 оборотов, его не нужно раскручивать, поэтому нажал — сразу поехал. В любом случае явно резвее, чем с 1,2-литровым мотором.

Управлять им просто. Есть ручка переключения направления движения вперед-назад, «ручник», педаль тормоза и «газа». И все. Тормоза неплохие, выворот хорош, сидеть удобно. Вроде самоделка, но ездить можно вполне нормально.

В поворотах, если проходить их быстро, страшновато. Мотор расположен под днищем по центру, батарея тоже низко, но все равно кренится автомобиль прилично. Тихим его не назовешь — очень много звуков создает сама электрическая установка. Плюс возраст авто все же сказывается… В любом случае по своим возможностям, учитывая размеры, это просто монстр, а не кей-кар.

Дорожный просвет большой, свесы короткие, веса мало, поэтому и в переднеприводном варианте он остается достаточно проходимым автомобилем.

«Когда был Хавьер, у меня был бензиновый Libero. Мы по полю ехали, машина остановилась только тогда, когда лобовое стекло уперлось в снег. Причем обратно она выехала. Это очень проходимый автомобильчик. Да, привод теперь передний, но все равно проходимость остается на уровне».

По подсчетам Алексея автомобиль за 2,5-3 года отобьется, «потому что обслуживать не надо, «зарядки» на «Белоруснефти» бесплатные, ездишь бесплатно. Да, я старый «субарист», но пересел на электромобиль и теперь пересаживаться обратно на ДВС мне не хочется».

Заметки на полях

Бачок омывающей жидкости расположен прямо в салоне возле пассажирского кресла. Заправлять удобно, зимой не замерзает.

Для обогрева используется бензиновый отопитель Webasto.

Обзорность у авто «аквариумная», видно все очень хорошо. Посадка высокая, но удобная. Гидроусилителя руля нет, но рулевое колесо крутится легко.

Бачок тормозной жидкости находится прямо в салоне. Капота как такового у автомобиля нет.

Практичные, для работы или для души — предложения под разные нужды в нашей базе автообъявлений

Автомобильная электроника: взяться за ПО или откатиться в прошлое

image

Все идет к тому, что автомобильная электроника будет определяться программным обеспечением.

С момента внедрения различных электромеханических и электронных компонентов, автомобили стали самыми сложным продуктами в серийном производстве за последние 50 лет. За это время электронные систем дополнили (и заменили) различные узлы и системы, и еще многое только предстоит сделать.

Все это значит, что рано или поздно автомобильные системы станут самыми сложными продуктами в производстве на рынке электроники (возможно, они уже значительно отличаются от всех прочих продуктов). Да, возможно компоненты для самолетов более сложны в плане деталей, а у суперкомпьютеров более сложная электроника, но их и не производят десятками миллионов каждый год.

Благодаря электронным системам, в автомобилях используется намого больше ПО – объем использования зависит от автомобиля. Существует множество статей, в которых утверждается, что в современных автомобилях используется более 100 миллионов строк кода. Я не видел подробного разбора, в котором объяснялось бы что входит в эти 100 миллионов – если такой существует, его данные могут быть очень полезны. Конечно, чем дальше будут развиваться системы ADAS, интернет автомобилей, технологии сетевого взаимодействия, кибербезопасность и системы беспилотной езды, тем больше в автомобилях будет использоваться программных компонентов.

Я не видел обсуждений автомобильного ПО в контексте стратегических решений, сегментов рынка ПО, ключевых технологий и других важных проблем. В этом тексте мы рассмотрим все эти вопросы, а также изучим перспективы рынка автомобильного ПО. Существуют значительные отличия между аппаратным и программным обеспечением в автомобилях, и именно эти отличия влияют на успех рынка автомобильного ПО.

За последние два десятилетия автомобильное ПО прошло большой путь. В 1990-х ПО в автомобилях использовалось только для управления встроенной электроникой в системах вождения и простых развлекательных устройствах. Со временем сложность этих систем значительно увеличивалась, но лишь в немногих (если такие вообще были) встроенных системах использовалось порядка миллиона строк кода. Автопроизводители и их поставщики справлялись с разработкой встроенных систем своими силами.

Все изменилось в 1990-х, когда информационно-развлекательные и навигационные системы получили множество функций и возможностей, требовавшие наличие полноценной ОС, которая позволяла бы справляться с сложностью ПО. Операционные системы вывели компании из области высоких технологий на автомобильный рынок (в список таких компаний входят QNX, Green Hills, Wind River, Microsoft и многие другие). За последнее время в автомобильной промышленности значительно выросла важность открытого ПО (такого, как Linux).

Концепция «Разработка-сборка-маркетинг-использование»

На приведенном ниже изображении представлены все различия между аппаратным и программным обеспечением в автомобилях. Впрочем, структура данного сравнения требует некоторых пояснений. На картинке представлены 4 фазы, через которые проходят все продукты и индустрии. Фаза разработки представляет собой процесс исследований и работы над созданием продукта. Фаза сборки подразумевает производство продукта – включая стоимость всех запчастей, затраты на производственные мощности и цепочку поставок. Третья фаза – это маркетинг. В эту фазу входят такие аспекты как реклама, продажи и работа с каналами распространения – все операции, необходимые для поставки продукта непосредственному покупателю. Четвертая фаза – использование – в автомобильной промышленности является достаточно длительной.

Я ознакомился с концепцией «разработка-сборка-маркетинг» в Texas Instruments, она была очень популярна в 70-х и 80-х годах. Когда я работал в IHS Markit, я добавил фазу использования. Я использовал различные идеи из этих фаз в отчетах и презентациях в качестве инструмента для анализа различных сегментов автомобильного рынка (включая ПО, батареи в электромобилях, 3D печать и многих других).

В приведенной ниже схеме сделан акцент на индивидуальной значимости каждого из четырех этапов для аппаратного и программного обеспечения. Также в ней приведены комментарии о том, как эти компоненты влияют на рыночные успех автомобиля на каждом из этапов.

Фазы работы над аппаратным обеспечением

В верхней части схемы представлены ключевые характеристики каждой из четырех фаз создания аппаратной части автомобиля. Фаза разработки определяет набор характеристик и свойств электронных систем, ее важность продолжает расти и по сей день. Большая часть аппаратных компонентов поставляется компаниями из индустрии производства чипов, и эта отрасль будет только развиваться. Экосистема аппаратных платформ, используемых в автомобильной электронике, также приобретает все большее значение. Стоимость первой фазы разработки аппаратуры оценивается в миллионах (или десятках миллионов) долларов, но поскольку объем производства составляет сотни тысяч единиц, стоимость в пересчете на один автомобиль невысока.

Фаза сборки – самая дорогая в этой цепочке. Причиной тому является стоимость всех компонентов аппаратуры (или ведомость материалов). Также необходимо учитывать стоимость управления цепочками поставок, стоимость человеческого труда и многие другие аспекты. В целом, затраты на аппаратуру составляют малую долю от общей стоимости автомобиля, но эта сумма растет даже с учетом снижения стоимости отдельных компонентов. Средняя стоимость всех компонентов электронных систем составляет от 3 до 8 тысяч долларов (верхняя граница относится к люксовым автомобилям).

Фаза маркетинга для аппаратного обеспечения варьируется в зависимости от компонентов и типа системы. В большинстве случаев, этой фазой занимается Tier-1 поставщик, в результате чего продукт становится полноценной системой с автомобильной электроникой.

Характеристики и возможности аппаратных компонентов также оказывают очень большое влияние на продажи автомобилей (и это влияние продолжает расти). Это влияние возникает за счет функциональности, которую и обеспечивают компоненты электронных систем. Возможности, над которыми сейчас ведется работа (равно как и возможности, которые появятся в будущем), относятся к системам ADAS, аппаратным средствам кибербезопасности, улучшаемым платформам и технологиям беспилотной езды.

Фаза использования продуктов автомобильного рынка, в среднем, длится от 10 до 15 лет, иногда немного дольше. Такой длительный срок службы требует высокой надежности оборудования, чтобы сократить расходы производителей на гарантийное обслуживание и отзывные кампании. В рамках фазы использования наибольшие возможности появляются у представителей рынка послепродажного обслуживания – особенно после того, как у компонентов заканчивается заводская гарантия. Значительное количество ДТП также создает для таких компаний бизнес-возможности, поскольку пострадавшим автомобилям необходимы новые аппаратные компоненты.

Фазы работы над программным обеспечением

В нижней части схемы представлены ключевые характеристики четырех фаз работы над автомобильным ПО. Программное обеспечение существует исключительно в цифровом виде, а потому его характеристики отличаются от характеристик аппаратной части. Впрочем, ПО, конечно, полностью зависит от связанных с ним аппаратных компонентов.

Фаза разработки – самая долгая и, как правило, самая дорогая стадия создания программного продукта. Крупные программные проекты требуют длительного времени разработки, которое, в том числе, уходит на сложные процедуры тестирования для исправления как можно большего количества ошибок (что абсолютно оправданно с экономической точки зрения). Ни одна крупная программная платформа никогда не обходится без ошибок, а новые ошибки обнаруживаются на протяжении всего срока службы программного обеспечения. Требования к кибербезопасности создали новый класс программных ошибок – уязвимости, которые могут эксплуатироваться злоумышленниками с различными целями. Поскольку большинство программистов в автомобильной промышленности не являются экспертами в области кибербезопасности, они не всегда знают как писать код так, чтобы он был полностью неуязвимым к атакам хакеров.

Фаза сборки автомобильного ПО выдвигает значительные требования к экосистеме – речь о необходимости написания новых программ и тестировании получившихся программных продуктов. Автомобильная индустрия добивается в этой сфере хороших успехов (некоторые ее представители также используют инструменты для разработки с открытым исходным кодом).

Фаза сборки также обычно является самой дешевой – это просто запуск готового ПО на имеющейся аппаратной платформе. Иногда производители сталкиваются с необходимостью выплачивать роялти, но обычно это лишь небольшая часть стоимости аппаратных компонентов. Фаза сборки, по сути, представляет собой загрузку программ в электронные системы автомобиля. Также существует некоторая гибкость в плане того, когда и как именно ПО загружается в электронные системы.

Фаза маркетинга в случае с ПО варьируется от сегмента использования и типа программного продукта. В большинстве случаев фазой маркетинга занимается Tier-1 поставщик, представляя программный продукт как часть электронных систем автомобиля.

Функциональные возможности ПО оказывают значительное влияние на продажи автомобилей. Во многом это влияние основано на удобстве использования или том, как ПО реализует человеко-машинный интерфейс (HMI). Удобство использования влияет на все области функциональности – функции интернета автомобилей, обновления по воздуху, функциональные обновления, системы ADAS и функции беспилотной езды, которые появятся в будущем. Низкий уровень удобства использования ПО приведет к негативным отзывам, что отрицательно скажется на потенциале конкретной модели. Подобные негативные тенденции являются проблемой для современных информационно-развлекательных систем и одной из причин недавних успехов Apple и Google в области интеграции информационно-развлекательных систем со смартфонами.

Фаза использования продуктов автопромышленности длится от 10 до 15 лет, в некоторых странах дольше. Столь длительный жизненный цикл приводит к тому, что автомобилям требуются многочисленные исправления ошибок в ПО. Снижение затрат на исправление ошибок, возникающее за счет возможности обновления по воздуху, необходимо для экономии на гарантийном обслуживании и отзывных кампаниях.

Фаза использования – этап, в котором рынок ПО может значительно развиваться и имеет большие перспективы для роста в сегментах SaaS (Software as a Service, ПО как услуга) и облачного ПО. Кибербезопасность на основе SaaS – это очень многообещающая возможность. Исправления ошибок, устанавливаемые по воздуху, и функциональные обновления уже сейчас представляются как основные возможности этапа использования продукта. Стоит отметить, что рынок информационно-развлекательного контента с использованием SaaS сейчас на подъеме. Также новые возможности могут возникать за счет случающихся ДТП, поскольку новые аппаратные системы будут нуждаться в установке нового ПО.

Заключение

Четыре этапа создания ПО показывают, что этап разработки является самым дорогостоящим. Эта концепция предполагает, что решение заключается в использовании программных платформ для снижения затрат на разработку и уменьшения количества ошибок в больших программных продуктах. Автомобильная промышленность начинает внедрять стратегию использования программных платформ, и представители рынка высоких технологий ей в этом помогают, но этого недостаточно.

Подписывайтесь на каналы:
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla
@AutomotiveRu — новости автоиндустрии, железо и психология вождения

image

Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.

Источник http://avtoshef.com/yelektronika-dlya-avto-svoimi-rukami/

Источник https://www.abw.by/novosti/experience/213361

Источник https://habr.com/ru/company/itelma/blog/518168/

Источник




Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *